

150W isolated DC-DC converter in ½-Brick package, Wide input voltage and regulated single output

FEATURES

- Wide input voltage range: 50-160VDC
- High efficiency up to 91%
- No-load input current as low as 3mA
- I/O isolation test voltage 3k VDC
- Operating ambient temperature range: -40°C
 ~ +100°C
- Input under-voltage, output over-voltage, over-current, short-circuit, over-temperature protection
- Industry standard ½-Brick package and pin-out
- Meets requirements of railway standard EN50155

URF1D_HB-150W series is a high-performance product specifically designed for a variety of railway applications. The DC-DC converters feature 150W output power with no requirement for minimum load, wide input voltage from 50-160VDC, and allowing operating out-case temperature as high as 100℃. Additional product features include input under-voltage protection, output over-voltage, short-circuit, over-current and over-temperature protection, remote On/Off control, remote sense compensation, output voltage trim adjustment. The products meet EN50155 railway standards and are widely used in the on-board electronic system and associated equipment.

Selection Guide	Э						
	Input	t Voltage (VD	DC)	Ou	utput	Full Load	Max. Capacitive
Part No. [®]	Nominal	(Range)	Max.®	Voltage(VDC)	Current (mA) (Max./Min.)	Efficiency(%) Min./Typ.	Load(µF)
URF1D12HB-150W		(66-160)		12	12500/0	97/90	10000
UKF1D12Hb-15UW		(50-66)		12	10000/0	87/89	10000
URF1D15HB-150W	110	(66-160)	170	15	10000/0	97/90	4000
OKFID ISHB-150W	110	(50-66)	170	15	8000/0	87/89	6800
LIDE1DOALIB 150W		(66-160)		24	6250/0	90/01	4400
URF1D24HB-150W		(50-66)		24	5000/0	89/91	4400

Note:

②Exceeding the maximum input voltage may cause permanent damage.

Item	Operating Conditions	Min.	Тур.	Max.	Unit
Input Current (full load / no-load)	Nominal input		1532/3	1567/10	A
Reflected Ripple Current	Nominal input		80	_	mA
Surge Voltage (1sec. max.)		-0.7		180	
Start-up Voltage		_	47	50	VDC
Under-voltage Protection		35	43	50	
Start-up Time		-	25		mS
Input Filter			Pi filte	ər	
	Module on	Ctrl	pin open or pulled	d high (3.5-12VDC)
Ctrl*	Module off	Ctrl pin pulled low to GND (0-1.2VDC)			
	Input current when off		2	5	mA
Hot Plug			Unavaile	able	

Output Specifications					
Item	Operating Conditions	Min.	Тур.	Max.	Unit
Voltage Accuracy	Nominal input,10%-100% load		±1	±3	%

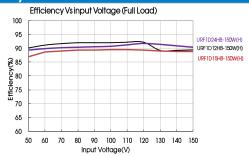
MORNSUN®

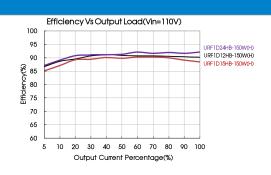
Ouse "H" suffix for heat sink mounting; We recommend to choose modules with a heat sink for enhanced heat dissipation and applications with extreme temperature requirements;

DC/DC Converter URF1D_HB-150W Series

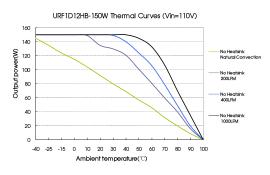
MORNSUN®

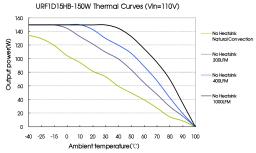
Linear Regulation	Input voltage variation fro	Input voltage variation from low to high at full load			±0.3	%
Load Regulation	Nominal input,10%-100% lo	Nominal input,10%-100% load			±0.5	
Transient Recovery Time			-	300	500	μs
Translant Deep ence Devidation	25% load step change	15V, 24V output	-	±3	±5	9/\/-
Transient Response Deviation		12V output	-	±4	±8	%Vo
Temperature Coefficient	Full load				±0.03	%/℃
Ripple & Noise *	20MHz bandwidth (with 10	0%-100% load)		60	150	mVp-p
Trim			95		110	
Sense					105	%Vo
Over-voltage Protection	In		110		140	%Vo
Over-current Protection	Input voltage range		110	130	180	%lo
Short-circuit Protection	Nominal input		Hic	cup, continu	ious, self-recc	very
Note: * For ripple and noise measuring r	method, please refer to Fig. 2.					

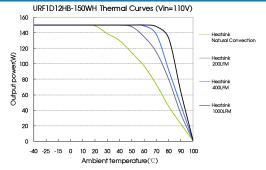

ltem		Operating Conditions	Min.	Тур.	Max.	Unit	
	Input - Output		3000	-	-	VDC	
Isolation	Input - Out-case	Input-output Electric Strength test for 1	1500		-		
	Output - Out-case	minute with a leakage current of 1mA max.	1000	-	-		
Insulation Re	esistance	Input-output insulation at 500VDC	1000	-	-	MΩ	
Isolation Cap	pacitance	Input-output capacitance at 100KHz/0.1V		2500	-	pF	
Operating Te	emperature	See Temperature Derating Curve Fig. 1	-40		100		
Out-case Te	mperature	Within the operating temperature curve	-40		100		
Storage Tem	perature		-55		125	$^{\circ}$	
Over-temperature Protection		Out-case Temperature	100		120		
Pin Soldering Resistance Temperature		Soldering spot is 1.5mm away from case for 10 seconds			300		
Storage Hun	nidity	Non-condensing	5		95	%RH	
		Natural convection	7.8	-	-		
	URF1D12HB-150W URF1D15HB-150W	200LFM convection	4.44	-	-		
	URF1D15HB-150W	400LFM convection	3.39	-	-	°C/W	
Thermal		1000LFM convection	2.52	_	-		
Resistance	URF1D12HB-150WH	Natural convection	3.7			C/VV	
	URF1D15HB-150WH	200LFM convection	2.2				
		400LFM convection	1.76				
URF1D24HB-150WH		1000LFM convection	1.28			1	
Switching Fre	equency	PWM mode		160		KHz	
MTBF		MIL-HDBK-217F@ (Plate Tb=70°C, GB)	500		-	K hours	
Shock and Vibration Test			IEC61373-C	ategory 1. Gr	ade B		

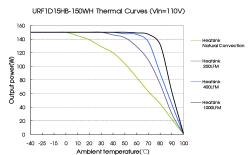

Mechanical Specifications				
Case Material Aluminum plate + plastic case		Black Epoxy resin; flame-retardant and heat-resistant (UL94-V0)		
Heatsink		Aluminum Alloy		
Walaht	URF1D12HB-150W, URF1D15HB-150W, URF1D24HB-150W	70.0g (Typ.)		
Weight URF1D12HB-150WH, URF1D15HB-150WH, URF1D24HB-150WH		120.0g (Typ.)		
Cooling method		Natural convection or Forced air convection		

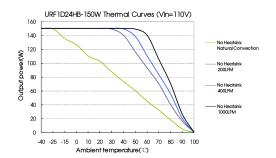
MORNSUN®


Electror	magnetic Co	mpatibility (EMC			
Emissions	CE	CISPR32/EN55032	Class B (see Fig.4)		
ETHISSIONS	RE	CISPR32/EN55032	Class B (see Fig.4)		
	ESD	IEC/EN61000-4-2	Contact ±6KV. Air ±8KV	perf.Criteria B	
	GB/T17626.2		CONICCI FORV, All FORV	pen.ciliena b	
	RS	IEC/EN61000-4-3	10V/m	perf.Criteria A	
	Ko	GB/T17626.3	100/111	pon oned A	
Immunity	nity CS		10Vr.m.s	perf.Criteria A	
in i		GB/T17626.6	TOVATIA	pon.onena A	
	EFT	IEC/EN61000-4-4	±2KV(5KHz/100KHz) see Fig. 4 for recommended circuit	perf.Criteria B	
		GB/T17626.4	22(4 (old 12) 100(d 12) 000 Hg. 4 101 1000(HHIII) Idou Gilcul	pontoniona b	
	Surge	IEC/EN61000-4-5	±2KV(1.2μs/50μs 2Ω) (see Fig. 4 for recommended circuit	perf.Criteria B	
	Julian	GB/T17626.5	ZERT (TIZPO) COPO ZEZZ (COO TIGI - TO TOCOTTITIO I COO CIICUII	pen.ciliella b	


Efficiency Curves






Temperature Derating Curve

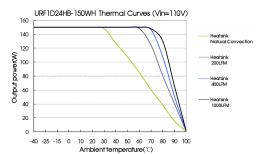
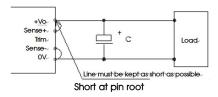
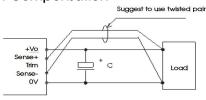



Fig. 1

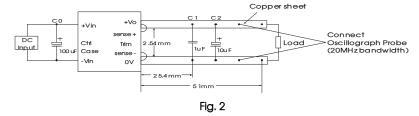
Remote Sense Application


1. Remote Sense Connection if not used

Notes:

- 1. If the sense function is not used for remote regulation the user must connect the +Sense to + Vo and -Sense to 0V at the DC-DC converter pins and will compensate for voltage drop across pins only.
- 2. The connections between Sense lines and their respective power lines must be kept as short as possible, otherwise they may be picking up noise, interference and/or causing unstable operation of the power module.

2. Remote Sense Connection used for Compensation

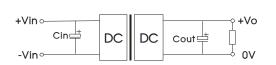

Notes:

- (1) PCB-tracks or cables/wires for Remote Sense must be kept as short as possible.
- (2) In cables and discrete wiring applications, twisted pair or other techniques should be implemented.
- (3) Using remote sense with long wires long wires may cause unstable operation. Note that large wire impedance may cause oscillation of the output voltage and/or increased ripple. Consult technical support or factory for further advice of sense operation.
- (4) We recommend using adequate cross section for PCB-track layout and/or cables to connect the power supply module to the load in order to keep the voltage drop below 0.3V and to make sure the power supply's output voltage remains within the specified range.

Design Reference

1. Ripple & noise

All DC-DC converters of this series have been tested according to the following recommended test circuit before leaving the factory (see Fig. 2) and ripple & noise tests are performed according to Fig. 3.



2. Typical application

We recommended using Mornsun's EMC circuit, otherwise please ensure that at least a 100 μ F electrolytic capacitors is connected at the input in order to ensure adequate voltage surge suppression and protection.

Input and/or output ripple can be further reduced by appropriately increasing the input & output capacitor values Cin and Cout and/or by selecting capacitors with a low ESR (equivalent series resistance). Also make sure that the capacitance is not exceeding the specified max. capacitive load value of the product.

MORNSUN®

Capacitor Value Output Voltage	Cout(µF)	Cin(µF)
12V、15V、24V	220	100

3. EMC compliance circuit

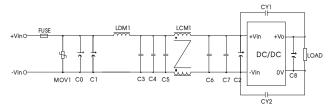


Fig. 4

Element model	Recommended value
FUSE	Choose according to actual input current
MOV1	S20K130 (Varistor)
CO	220uF/200V (electrolytic capacitor)
C1/C2	100uF/200V (electrolytic capacitor)
C3/C4/C5/C6/C7	2.2uF/250V
C8	220 uF/50V(electrolytic capacitor)
CYI	2200pF/400VAC (Y Safety capacitor)
CY2	3300pF/400VAC (Y Safety capacitor)
LDM1	10uH (Shielded inductor)
LCM1	1.0mH, recommended to use MORNSUN's FL2D-30-102

4. Thermal design

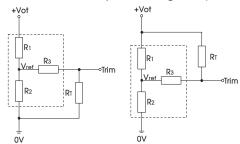
The maximum operating out-case Temperature TB is 100 °C. As long as the users thermal application keeps TB <100 °C, the converter can be used with its full rated power. When using a heatsink attached to the out-case of the converter the power derating curve can be calculated accordingly. It is only necessary to determine the selected heatsinks thermal resistance Rth(B-A) between Out-case and ambient for a given airflow rate. This information is usually available from the heatsink vendor.

The following formula can be used to determine the maximum power the converter can dissipate for a given thermal condition with the Out-case is to be maintained at a temperature no higher than $100\,^{\circ}$ C.

$$P_{diss}^{\text{max}} = \frac{100^{\circ}\text{C} - T_{\text{A}}}{R \text{th}} \left(\text{B - A} \right)$$

T_A = ambient temperature

The maximum available power of the module at a certain ambient temperature can be calculated by the power dissipation according to following formula which allows customers to choose the appropriate heatsink according to the actual application:


$$Po_{\text{max}} = \frac{P_{diss}^{\text{max}}}{(\frac{1}{\eta} - 1)}$$

= converter efficiency

Therefore, customers can according to the actual application to choose the right heatsink.

Trim up

5. Trim Function for Output Voltage Adjustment (open if unused)

Calculation formula of Trim resistance:

up:
$$R_T = \frac{\alpha R_2}{R_2 - \alpha} - R_3$$
 $\alpha = \frac{Vref}{Vo' - Vref} \cdot R_1$

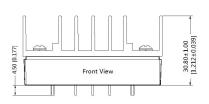
down:
$$R_T = \frac{\alpha R_1}{R_1 - \alpha} - R_3$$
 $\alpha = \frac{\text{Vo'-Vref}}{\text{Vref}} \cdot R_2$

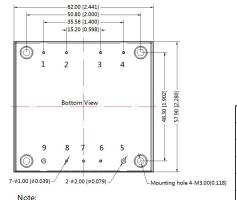
Note: Value for R1, R2, R3, and V_{ref} refer to the above table 1. R_1 : Resistance of Trim. a: User-defined parameter, no actual meanings. Vo': The trim up/down voltage.

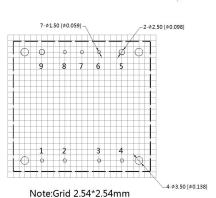

TRIM resistor connection (dashed line shows internal resistor network)

Trim down

	table 1					
Vo Parameter	12(VDC)	15(VDC)	24(VDC)			
R1(K Ω)	11	14.49	24.87			
R2(K Ω)	2.87	2.87	2.87			
R3(K Ω)	17.8	20	20			
Vref(V)	2.5	2.5	2.5			


- 6. The products do not support parallel connection of their output
- For additional information about our EMC Filter products, refer to www.mornsun-power.com and our application notes.


Dimensions and Recommended Layout (Without heatsink)



Dimensions (With heatsink)

Note:
Unitmm[inch]
Pin1,2,3,4,6,7,8's diameter:1.00[0.039]
Pin5,9's diameter:2.00[0.079]
Pin diameter tolerances:±0.10[±0.004]
General tolerances:±0.50[±0.020]
Mounting hole screwing torque: Max 0.4 N·m

THIRD ANGLE PROJECTION

Pin-Out					
Pin	Function	Pin	Function		
1	+Vin	6	Sense-		
2	Ctrl	7	Trim		
3	Case	8	Sense+		
4	-Vin	9	+Vo		
5	0V				

Note

- 1. For additional information on Product Packaging please refer to www.mornsun-power.com. Packaging bag number: 58200069(without heatsink), 58200061(with heatsink);
- 2. The max capacitive load should be tested within the input voltage range and under full load conditions;
- 3. It is recommended that customers use enamel film or thermal grease between the heat sink and the module when using the heat sink to ensure good heat dissipation.
- 4. Unless otherwise specified, parameters in this datasheet were measured under the conditions of Ta=25°C, humidity<75%RH with nominal input voltage and rated output load;
- 5. when used in lower than 10% load, the ripple & noise index of the product is 3%Vo;
- 6. All index testing methods in this datasheet are based on our company corporate standards;
- 7. The performance parameters of the product models listed in this manual are as above, but some parameters of non-standard model products may exceed the requirements mentioned above. Please contact our technicians directly for specific information;
- 8. We can provide product customization service, please contact our technicians directly for specific information;
- 9. Products are related to laws and regulations: see "Features" and "EMC";
- 10. Our products shall be classified according to ISO14001 and related environmental laws and regulations, and shall be handled by qualified units.

Mornsun Guangzhou Science & Technology Co., Ltd.

Address: No. 5, Kehui St. 1, Kehui Development Center, Science Ave., Guangzhou Science City, Huangpu District, Guangzhou, P. R. China Tel: 86-20-38601850 Fax: 86-20-38601272 E-mail: info@mornsun.cn www.mornsun-power.com

MORNSUN®