MORNSUN®

100W isolated DC-DC converter in 1/4-Brick package wide input voltage, regulated single output

FEATURES

- Wide 66-160V input voltage range
- High efficiency up to 92%
- Low no-load power consumption
- I/O isolation test voltage 3K VDC
- Operating ambient temperature range: -40°C ~ +100℃
- Input under-voltage protection, output short-circuit, over-current, over-voltage, over-temperature protection
- Industry standard 1/4-Brick package and pin-out

URF1D_QB -100W Series is a high-performance product specifically designed for a variety of railway applications. The DC-DC converters feature 100W output power with no requirement for minimum load, wide input voltage from 66-160VDC, and allowing operating out-case temperatures as high as $100\,^\circ$. The products also provide input under-voltage protection, output over-voltage, short-circuit and over-temperature protection. Additional functions include remote On/Off control, remote sense compensation and output voltage trim adjustment.

	Input Volta	ige (VDC)	Out	put	Full Load Efficiency	May Capacitive	
Part No.	Nominal (Range)	Max.*	Voltage (VDC)	Current(mA) Max./Min.	Full Load Efficiency [®] (%) Min./Typ.	Max. Capacitive Load(µF)	
URF1D12QB-100W			12	8333/0	87/89	6000	
URF1D12QB-100WH		110 (66-160) 170	12	0000/0	07/09	0000	
URF1D15QB-100W	110		15	444710	07/00	4700	
URF1D15QB-100WH	(66-160)		15	6667/0	87/89	4700	
URF1D24QB-100W				0.4	41/7/0	00.400	2000
URF1D24QB-100WH			24	4167/0	90/92	3000	

Input Specifications						
Item	Operating Conditions		Min.	Тур.	Max.	Unit
Input Current (no-load / full load)	Nominal input voltage	URF1D12QB-100W(H)		5/1021	15/1044	
		URF1D15QB-100W(H)	-	5/1021	15/1044	
		URF1D24QB-100W(H)	-	5/988	15/1010	mA
Reflected Ripple Current	Nominal input voltage		-	50	-	
Surge Voltage (1sec. max.)			-0.7	_	180	
Start-up Voltage			-	_	66	VDC
Under-voltage Protection			-	58		
Start-up Time			-	25		mS
Input Filter			Pi filter			
Hot Plug				Unav	ailable	
	Module on		Ctrl pin open or pulled high (TTL 3.5-12VDC)			-12VDC)
Ctrl*	Module off		Ctrl pin pulled low to GND (0-1.2VDC)			VDC)
	Input current when off			2		mA
Note: *The Ctrl pin voltage is referenced	I to input -Vin.				1	

Output Specifications					
Item	Operating Conditions	Min.	Тур.	Max.	Unit
Valtaria Applian	Nominal input voltage, 10%-100% load			±2	0/
Voltage Accuracy	Nominal input voltage, 0%-10% load			±3	%

MORNSUN®

DC/DC Converter URF1D_QB-100W Series

MORNSUN®

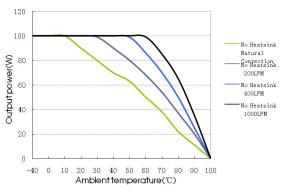
Linear Regulation	Input voltage variation from low to high at full load			±0.3	%
Load Regulation	Nominal input voltage,10%-100% load	-		±0.5	
Transient Recovery Time	050/		300	500	μs
Transient Response Deviation	25% load step change		±3	±5	%
Temperature Coefficient	Full load			±0.03	%/℃
Ripple & Noise *	20MHz bandwidth		100	300	mVp-p
Trim		-5	-	10	- %
Remote Sense Compensation			-	5	76
Over-voltage Protection		110		140	%Vo
Over-current Protection	Input voltage range	110	130	180	%lo
Short-circuit Protection		Continuous, self-recovery			
Note: * For ripple and noise measuring	method, please refer to Fig. 1	<u> </u>			

General Specifications						
Item		Operating Conditions	Min.	Тур.	Max.	Unit
Input-output Isolation Input-case			3000			
		Electric Strength Test for 1 minute with a leakage current of 1mA max.	1500			VDC
	Output-case	cullent of this max.	1500		-	
Insulation Resistance		Input-output resistance at 500VDC	1000		-	M Ω
Isolation Capacitance		Input-output capacitance at 100KHz/0.1V	-	2200		pF
Switching Frequency		PFM mode		220		KHz
MTBF		MIL-HDBK-217F@25℃	500			K hours

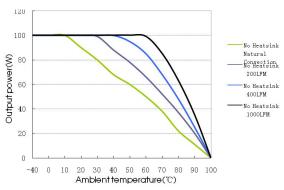
Environme	ental Specifica	ations			
Item	-	Operating Conditions	Min.	Max.	Unit
Out-case Temperature Range		Within the operating temperature curve	-40	+100	°C
Over-tempera	ture Protection	Out-case Temperature		+115	C
		Natural convection	8		
	URF1D_QB-100W	200LFM convection	6.0		
	OKLID_ØB-100M	400LFM convection	5.0		
Thermal		1000LFM convection	4.0		°C //A/
Resistance(R th(B-A))	URF1D_QB-100WH	Natural convection	5.1		°C/W
7,		200LFM convection	2.8		
		400LFM convection	2.2	-	
		1000LFM convection	1.8		
Storage Humid	lity	Non-condensing	5	95	%RH
Storage Tempe	erature		-55	+125	
Pin Soldering Resistance Temperature		Soldering spot is 1.5mm away from case for 10 seconds		+300	°C
Cooling Test			EN60068-2-1		
Dry Heat			EN60068-2-2		
Damp heat			EN60068-2-30		
Shock and Vib	ration Test		IEC61	373-Category 1, Gr	ade B

Mechan	Mechanical Specifications				
Case Material		Black plastic, flame-retardant and heat-resistant (UL94 V-0)			
Dimonsion	Without Heatsink	60.80 x 39.20 x 12.70mm			
Dimension With Heatsink 62.1		62.00 x 39.20 x 30.80mm			
Weight	Without Heatsink	46.0g (Typ.)			

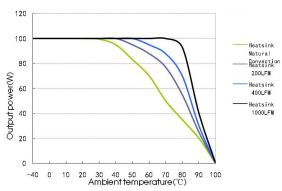
MORNSUN®

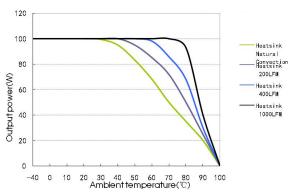


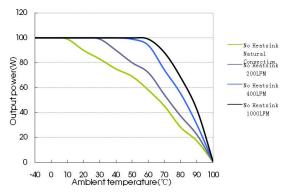
	With Heatsink	76.0g (Typ.)
Cooling me	hod	Free air convection or Forced convection

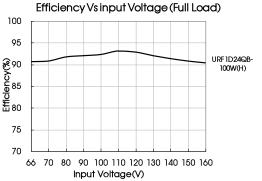

Electro	magnetic (Compatibility	(EMC)	
Emissions	CE	CISPR32/EN55032	150KHz-30MHz Class B (see Fig. 2 -1 for recommended circuit)	
ETHISSIONS	RE	CISPR32/EN55032	30MHz-1GHz Class B (see Fig. 2 -1for recommended circuit)	
	ESD	IEC/EN61000-4-2	GB/T17626.2 Contact ±6KV, Air ±8KV	perf.Criteria B
	RS	IEC/EN61000-4-3	GB/T17626.3 10V/m	perf.Criteria A
	CS	IEC/EN61000-4-6	GB/T17626.6 10Vr.m.s	perf.Criteria A
	EFT	IEC/EN61000-4-4	GB/T17626.4 ±2KV(5KHz, 100KHz) (see Fig. 2-1for recommended circuit)	perf.Criteria B
Immunity	Surge	IEC/EN61000-4-5	GB/T17626.5 line to line ± 2 KV (1.2 μ s/50 μ s 2 Ω), (see Fig.2-1for recommended circuit) line to ground ± 4 KV(1.2 μ s/50 μ s 12 Ω), (see Fig.2-1 for recommended circuit)	perf.Criteria B
		EN50155	see Fig.2-1for recommended circuit	perf.Criteria B
	Immunities of short interruption	EN50155	100%, 0%, 10ms (see Fig.2-1 for recommended circuit)	perf.Criteria B

Typical Characteristic Curves

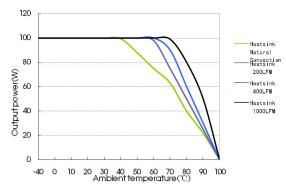

URF1D12QB-100W Temperature Derating Curves (Vin=110V)

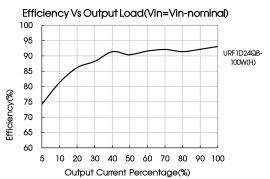

URF1D15QB-100W Temperature Derating Curves (Vin=110V)


URF1D12QB-100WH Temperature Derating Curves (Vin=110V)

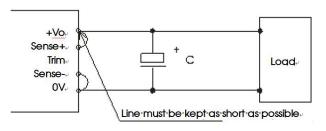


URF1D15QB-100WH Temperature Derating Curves (Vin=110V)




URF1D24QB-100W Temperature Derating Curves (Vin=110V)

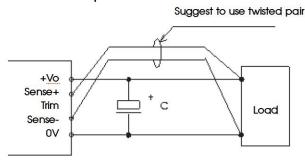
URF1D24QB-100WH Temperature Derating Curves (Vin=110V)



Note:

- 1. Temperature derating curves and efficiency curves are typical test values;
- 2.Temperature derating curve in accordance with our laboratory test conditions for testing, the actual use of environmental conditions if the customer is not consistent, to ensure that the product aluminum shell temperature does not exceed 100 °C, can be used within any rated load range.

Sense of application and precautions

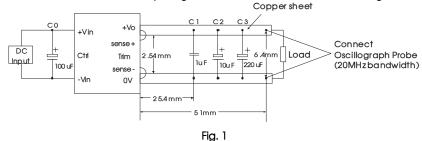

1. Remote Sense Connection if not used

Notes:

- 1) If the sense function is not used for remote regulation the user must connect the +Sense to + Vo and -Sense to 0V at the DC-DC converter pins and will compensate for voltage drop across pins only.
- 2) The connections between Sense lines and their respective power lines must be kept as short as possible, otherwise they may be picking up noise, interference and/or causing unstable operation of the power module.

2. Remote Sense Connection used for Compensation

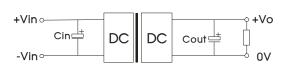
MORNSUN®


Notes:

- (1) PCB-tracks or cables/wires for Remote Sense must be kept as short as possible
- (2) In cables and discrete wiring applications, twisted pair or other techniques should be implemented.
- (3) Using remote sense with long wires long wires may cause unstable operation. Note that large wire impedance may cause oscillation of the output voltage and/or increased ripple. Consult technical support or factory for further advice of sense operation.
- (4) We recommend using adequate cross section for PCB-track layout and/or cables to connect the power supply module to the load in order to keep the voltage drop below 0.3V and to make sure the power supply's output voltage remains within the specified range.

Design Reference

1. Ripple & noise


All DC-DC converters of this series are tested before delivery using the recommended circuit shown in Fig. 1.

2. Typical application

(1) We recommened using the recommended circuit shown in Fig.1 during product testing and application, otherwise please ensure that at least a 220 μ F electrolytic capacitors is connected at the input in order to ensure adequate voltage surge suppression and protection.

(2) Input and/or output ripple can be further reduced by appropriately increasing the input & output capacitor values Cin and Cout and/or by selecting capacitors with a low ESR (equivalent series resistance). Also make sure that the capacitance is not exceeding the specified max. capacitive load value of the product.

Capacitive Parameter Vout (VDC)	Cout(µF)	Cin(µF)
12VDC		
15VDC	220	100
24VDC		

3. EMC compliance circuit

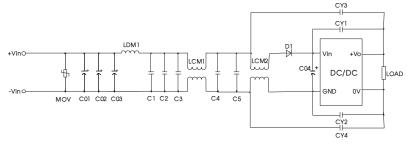


Fig. 2-1

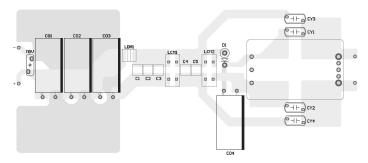


Fig. 2-2

MOV	S20K130(Varistor)
C01, C02, C03, C04	100uF/400V(electrolytic caoacitor)

MORNSUN®

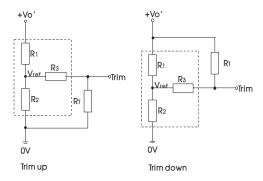
LDM1	10uH(Shielded inductor)
C1, C2, C3, C4, C5	2.2uF/250V
D1	SF306
CY1, CY2, CY3, CY4	2200 pF /400VAC (Y safety capacitor)
LCM1	FL2D-30-222
LCM2	FL2D-30-472

4. Thermal design

The maximum operating out-case temperature TB is $100\,^{\circ}$ C. As long as the users thermal application keeps TB < $100\,^{\circ}$ C, the converter can be used with its full rated power. When using a heatsink attached to the out-case of the converter the power derating curve can be calculated accordingly. It is only necessary to determine the selected heatsinks thermal resistance Rth(B-A) between out-case and ambient for a given airflow rate. This information is usually available from the heatsink vendor.

The following formula can be used to determine the maximum power the converter can dissipate for a given thermal condition with the out-case is to be maintained at a temperature no higher than $100\,^{\circ}$ C.

$$P_{diss}^{max} = \frac{100^{\circ}\text{C} - T_{A}}{R ext{th }_{(B-A)}}$$
 (TA = ambient temperature, $R ext{th}_{(B-A)}$ = thermal out-case resistance, P_{diss}^{max} = max power dissipation)


The maximum available power of the module at a certain ambient temperature can be calculated by the power dissipation according to following Formula which allows customers to choose the appropriate heatsink according to the actual application:

$$Po_{\text{max}} = \frac{P_{diss}^{\text{max}}}{(\frac{1}{\eta} - 1)}$$

$$\eta \qquad \qquad (\eta \text{ is converter efficiency})$$

Therefore, customers can according to the actual application to choose the right heatsink.

5. Trim function for output voltage adjustment (open if unused)

TRIM resistor connection (dashed line shows internal resistor network)

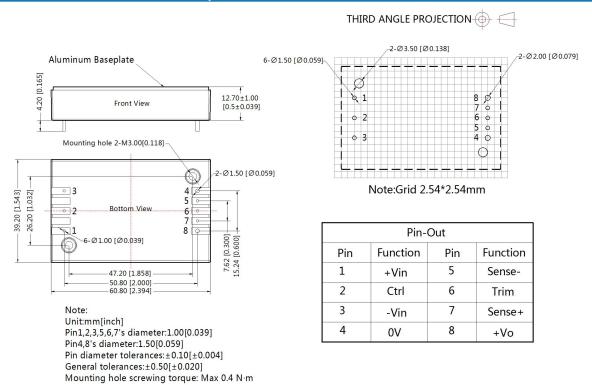
Calculating Trim resistor values:

up:
$$R_T = \frac{aR_2}{R_2 - a} - R_3$$
 $a = \frac{Vref}{Vo' - Vref} \cdot R_1$
down: $R_T = \frac{aR_1}{R_1 - a} - R_3$ $a = \frac{Vo' - Vref}{Vref} \cdot R_2$

100010			
Vo Parameter	12(VDC)	15(VDC)	24(VDC)
R1(K Ω)	11	14.49	24.87
R2(K Ω)	2.87	2.87	2.87
R3(K Ω)	15	15	20
Vref(V)	2.5	2.5	2.5

For R1, R2, R3 and Vref values refer to table 1.

RT = Trim Resistor value;


a = self-defined parameter

Vo' = desired output voltage (+10%, -5% max.).


- 6. The products do not support parallel connection of their output
- For additional information please refer to DC-DC converter application notes on www.mornsun-power.com

Dimensions and Recommended Layout (without heatsink)

Dimensions and Recommended Layout(with heatsink)

Mounting hole screwing torque: Max 0.4 N·m

Note

- For additional information on Product Packaging please refer to www.mornsun-power.com. Packaging bag number: 58010113(without heatsink), 58220017(with heatsink);
- Recommend to use module with more than 5% load, if not, the ripple of the product may exceeds the specification, but does not affect the reliability of the product;
- 3. The maximum capacitive load offered were tested at input voltage range and full load;
- 4. It is suggested to take our recommended circuit for EMC testing. If the customer needs to meet the performance of the surge and without taking recommended solution of ours, please make sure the residual voltage of surge less than 180V;
- 5. It is recommended that customers use enamel film or thermal grease between the heat sink and the module when using the heat sink to ensure good heat dissipation;
- 6. Unless otherwise specified, parameters in this datasheet were measured under the conditions of Ta=25°C, humidity<75%RH with nominal input voltage and rated output load;
- 7. All index testing methods in this datasheet are based on company corporate standards;
- 8. Products are related to laws and regulations: see "Features" and "EMC";
- Our products shall be classified according to ISO14001 and related environmental laws and regulations, and shall be handled by qualified units.

Mornsun Guangzhou Science & Technology Co., Ltd.

Address: No. 5, Kehui St. 1, Kehui Development Center, Science Ave., Guangzhou Science City, Huangpu District, Guangzhou, P. R. China Tel: 86-20-38601850 Fax: 86-20-38601272 E-mail: info@mornsun.cn www.mornsun-power.com

MORNSUN®