

USB 1.1 to Dual Serial Controller

Features

- USB Specification 1.1 Compliant
- Single 5V Operation
- On-Chip Regulator
- Low Power
- Dual Serial Ports
- Supports up to 920Kbps Data Rate
- Supports 8,7,6 & 5 Data Widths
- Supports Even, Odd, Mark, Space & None Parities
- Supports 1, 1.5 & 2 Stop Bits
- Internal Power-On Reset
- Available in 48-pin QFP Package

Applications

- High-Speed Modems
- Monitoring Equipment
 - Serial Networking

Application Note

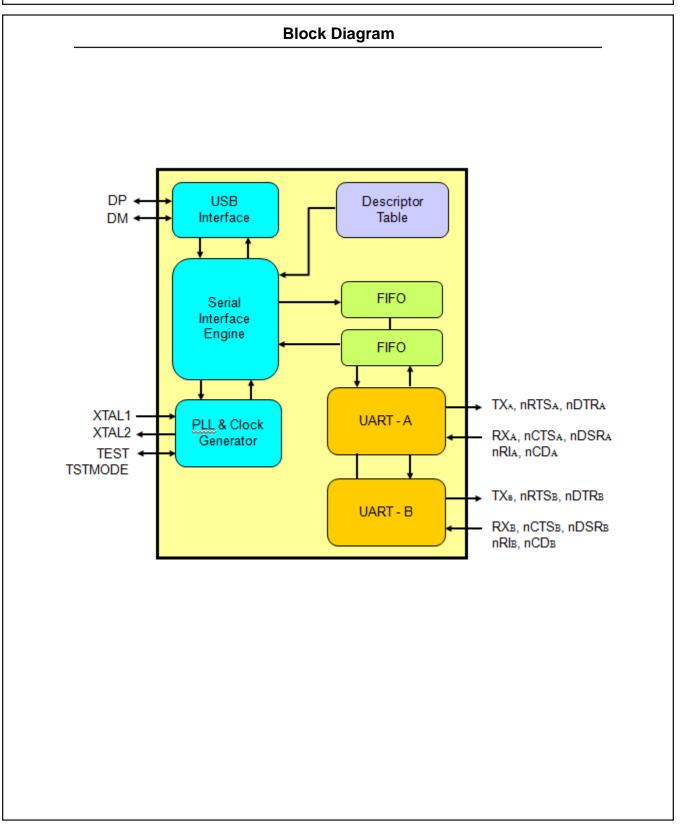
• AN-7720

Evaluation Board

• MCS7720-EVB

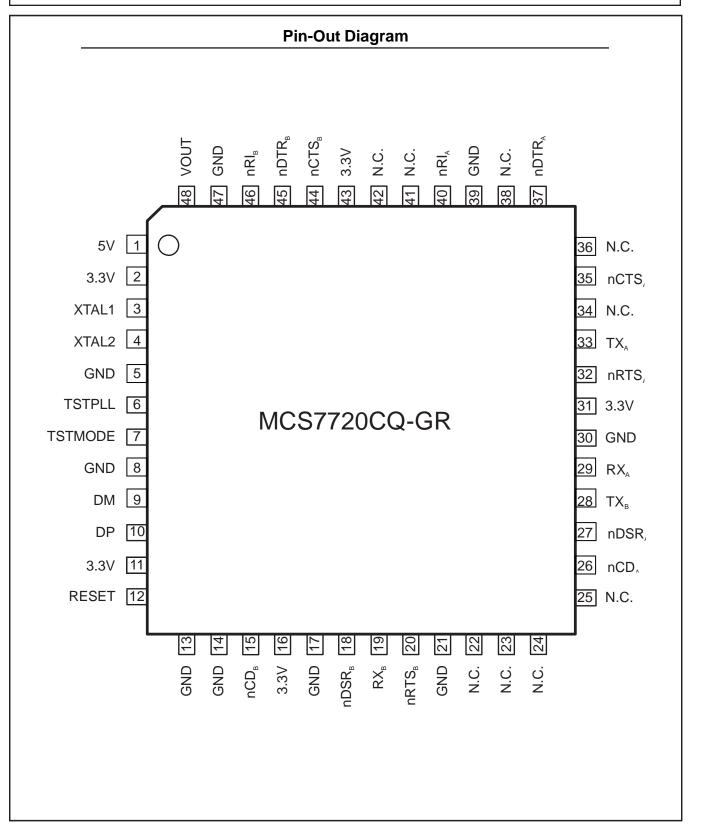
General Description

The MCS7720 controller provides bridging between the Universal Serial Bus (USB) input and two enhanced UART ports. This device contains all the necessary logic to communicate with the host computer via the USB Bus.


In addition, the MCS7720 contains a 3.3V regulator, operates in Bus-Powered mode, and has a reduced frequency (6 MHz) crystal oscillator.

This combination of features allows significant cost savings in system design, along with straightforward implementation of serial port functionality into PC peripherals using the host's USB port.

Ordering Information					
Commercial Grade (0° C to +70° C)					
MCS7720CQ-GR 48-LQFP RoHS					



MCS7720 USB 1.1 to Dual Serial Controller

MCS7720 USB 1.1 to Dual Serial Controller

Pin Assignments

Name	Pin	Туре	Description			
XTAL1	3	I	Crystal oscillator input or external clock input (6 MHz). This signal input is used in conjunction with XTAL2 to form a feedback circuit for the internal timing. Two external (10 pF) capacitors connected from each side of the crystal to GND are required to form a crystal oscillator			
XTAL2	4	0	Crystal oscillator output. See XTAL1 description.			
TSTPLL	6	I	Test Mode (active low, internal pull-up) input. When this pin is tied to GND, the internal PLL is bypassed and an external 48 MHz clock is used as the reference clock.			
TSTMODE	7	I	Internal Test Mode (internal pull-up). When this pin is tied to GND, the internal test mode is enabled.			
DM	9	I/O	Upstream USB port Differential data Minus (D-), analog.			
DP	10	I/O	Upstream USB port Differential data Plus (D+), analog.			
RESET	12	Ι	System Reset (Active high). Resets all internal registers, sequencers, and signals to a consistent state. Connect to GND to enable the internal Power-On Reset circuit.			
nCD _B	15	I	Carrier-Detect signal (B). When low this indicates that the modem or data set has detected the data carrier. nCD has no effect on the transmitter.			
nDSR _B	18	I	Data-Set-Ready signal (B). When low, this indicates the modem or data set is ready to establish a communication link.			
RX _B	19	I	Serial Data Input (B).			
nRTS _B	20	0	Request-To-Send signal (B). It is set high (inactive) after a hardware reset or during internal loop-back mode. When low, this indicates that the UART is ready to exchange data. nRTS has no effect on the transmitter or receiver.			
nCD _A	26	I	Carrier-Detect signal (A). When low this indicates that the modem or data set has detected the data carrier. nCD has no effect on the transmitter.			
nDSR _A	27	I	Data-Set-Ready signal (A). When low, this indicates the modem or data set is ready to establish a communication link.			
ТХ _в	28	0	Serial Data Output (B).			
RX _A	29	I	Serial Data Input (A).			

USB 1.1 to Dual Serial Controller

Name	Pin	Туре	Description
nRTS _A	32	0	Request-To-Send signal (A). It is set high (inactive) after a hardware reset or during internal loop-back mode. When low, this indicates that the UART is ready to exchange data. nRTS has no effect on the transmitter or receiver.
TX _A	33	0	Serial Data Output (A).
nCTS _A	35	I	Clear-To-Send signal (A). When low this indicates that the modem or data set is ready to exchange data. nCTS has no effect on the transmitter.
nDTR _A	37	0	Data-Terminal-Ready signal (A). It is set high (inactive) after a hardware reset or during internal loop- back mode. When low, this output indicates to the modem or data set that the UART is ready to establish a communication link. nDTR has no effect on the transmitter or receiver.
nRI _A	40	I	Ring-Detect signal (A).
nCTS _B	44	I	Clear-To-Send signal (B). When low this indicates that the modem or data set is ready to exchange data. nCTS has no effect on the transmitter.
nDTR _B	45	0	Data-Terminal-Ready signal (B). It is set high (inactive) after a hardware reset or during internal loop- back mode. When low, this output indicates to the modem or data set that the UART is ready to establish a communication link. nDTR has no effect on the transmitter or receiver.
nRI _B	46	I	Ring-Detect signal (B).
VOUT	48	PWR	+3.3V Voltage Regulator Output.
GND	5, 8, 13, 14, 17, 21, 30, 39, 47	PWR	Power and signal grounds.
3.3V	2, 11, 16, 31, 43	PWR	Device Supply inputs. All should be connected to the VOUT pin. The VOUT voltage is gated by RESET.
5V	1	PWR	Main Power Input. Connect to USB VBUS or local VDD.

Note: All names with "n" prefix are active low.

USB Description

Analog Transceivers

The on-chip transceivers are connected directly to USB cables through external series resistors. They transmit and receive serial data at both full-speed (12Mbit/s) and low-speed (1.5Mbit/s) data rates. Slew rates are automatically adjusted according to the speed of the device connected and lie within the range defined in the USB Specification Rev. 1.1.

Serial Interface Engine

This engine implements the complete USB protocol layer including: parallel /serial conversion, synchronization pattern recognition, CRC checking/ generation, bit (de)stuffing, packet identifier (PID) verification/generation, address recognition and handshake evaluation/generation.

Bit Clock Recovery

The bit clock recovery circuit recovers the clock from the incoming USB data stream using 4x over sampling. It is able to track in the presence of jitter and frequency drift as specified by the USB Specification Rev. 1.1.

3.3V Source

A 5V to 3.3V DC-DC regulator is integral to the chip relieving the need for a +3.3V source. It supplies the analog transceivers and internal logic and can be used to supply the $1.5k\Omega$ pull-up resistor on the DP line of the upstream connection.

PLL Clock Multiplier

An integral Phase-Locked Loop (PLL) performs 6 to 48MHz clock multiplication and requires no external components except the crystal. This allows for the use of low-cost 6MHz crystals which reduce high frequency radiated Electro-Magnetic Interference (EMI).

USB Interface

All standard USB requests received from the host are processed on-board without the need of firmware intervention. The MCS7720 supports Bus-Powered operation only. The USB interface to the host controller includes a Control endpoint, a Bulk-In endpoint, a Bulk-Out endpoint and an Interrupt endpoint. The USB controller supports the USB-

specification. Hence, it supports all standard functionality associated with device enumeration, standard USB device requests, etc. In addition, there are Vendor Specific commands provided to allow a USB driver to access registers and ROM in the USB controller.

UART Register Set:

The UART has 10 registers. Mapping is dependent on the Line Control Register (LCR).

Register Name	Offset	R/W	Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
THR	0	W		Dat	a to be trar	smitted (Tr	ansmitting	Holding R	egister)	
RHR	0	R				eceived (R				
						Clean	Modem	Rx Stat	THRE	RxRdy
IER	1	R/W		Reserv	red	Sleep	Interrupt	Interrupt	Interrupt	Interrupt
						Mode	Mask	Mask	Mask	Mask
	_	14/	R	RHR				Flush	Flush	FIFO
FCR	2	W	Trigge	er Level	Rese	erved	Reserved	THR	RHR	Enable
	_	D		-Os	Dee		liste			Interrupt
ISR	2	R	Ena	abled	Rese	erved	Inte	rrupt Prior	rity	Pending
	-	5		Tx	Force	Odd/Even	Parity	Stop		
LCR	3	R/W	DLE	Break	Parity	Parity	Enable	Bits	Data L	ength
				Dioun	RTS/CTS	- T arity	Enable	Dito		
MCR	4	R/W	Res	erved	Flow	Loop	Unu	sed	RTS	DTR
mon		10,00	1100	orvou	Control	Loop	- Ond	000		DIK
			Data	Тx	THR	Rx	Framing	Parity		
LSR	5	R	Error	Empty	Empty	Break	Error	Error	Overrun	RxRdy
							Delta		Delta	Delta
MSR	6	R	DCD	RI	DSR	CTS	Della	TERI	Delta	CTS
SPR	7	R/W				Corotob D	ad Registe		DSK	015
			al Stan	dard Re	gisters – tł	nese are ac		-	7] = 1	
DLL DLM	0 1	R/W R/W		dard Re	gisters – th	Divisor La	atch bits[7:0 tch bits[15:	-	7] = 1	
	0 1	R/W R/W TH Dat 0 Wri LC	R ta to be ite R[7] =0	transm , only w	itted	Divisor La Divisor La	atch bits[7:0 tch bits[15:	2] 8] egister		
DLM gister: scription: set: missions:	0	R/W R/W TH Dat 0 Wri LC	R ta to be ite	transm	itted rite conditi 5] Bit	Divisor La Divisor La ion can acc	atch bits[7:0 tch bits[15: cess this re it[3]	-)] 8]	7] = 1 Bit[1]	Bit[0
DLM gister: scription: set: missions:	0 1 lition: Bit[7]	R/W R/W TH Dat 0 Wr LC	R ta to be ite R[7] =0 Bit[6] R ta to be	transm , only w	itted rite conditi 5] Bit Data	Divisor La Divisor La	atch bits[7:0 tch bits[15: cess this re it[3]	2] 8] egister		Bit[0
DLM gister: set: missions: ess Conc gister: scription: set:	0 1 lition: Bit[7]	R/W R/W TH Dat 0 Wri LC Rea LC	R ta to be R[7] =0 Bit[6] R ta to be ad R[7] =0	e transm , only w Bit[e receive , only re	itted rite conditi 5] Bit Data	Divisor La Divisor La ion can acc t[4] B to be trans	atch bits[7:0 tch bits[15: cess this re it[3] 1 mitted	2] 8] 29ister Bit[2]	Bit[1]	Bit[0
DLM gister: set: missions: ess Conc gister: scription: set: missions:	0 1 lition: Bit[7]	R/W R/W TH Dat 0 Wri LC Rea LC	R ta to be ite R[7] =0 Bit[6] R ta to be	e transm , only w Bit[itted rite conditi 5] Bit Data ed ed ead conditi 5] Bit	Divisor La Divisor La ion can acc t[4] B to be trans	ess this re	2] 8] 29ister Bit[2]		Bit[0

Interrupt Enable Register:

Serial channel interrupts are enabled using the Interrupt Enable Register (IER).

Register: Description Offset: Permission		IER Interrupt En 1 Read/Write	able Regis	ter				
	Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
				Sleep	Modem	Rx Stat	THRE	RxRdy
Re		Reserved	Reserved		Interrupt	Interrupt	Interrupt	Interrupt
				Mode	Mask	Mask	Mask	Mask

Bit	Name	Description
0	RxRdy Interrupt Mask	Logic 0 = Disable the Receiver Ready Interrupt Logic 1 = Enable the Receiver Ready Interrupt
1	THRE Interrupt Mask	Logic 0 = Disable the Transmitter Ready Interrupt Logic 1 = Enable the Transmitter Ready Interrupt
2	Rx Stat Interrupt Mask	Logic 0 = Disable the Receiver Status Interrupt (Normal Mode) Logic 1 = Enable the Receiver Status Interrupt (Normal Mode)
3	Modem Interrupt Mask	Logic 0 = Disable the Modem Status Interrupt Logic 1 = Enable the Modem Status Interrupt
4	Sleep Mode	Logic 0 = Disable Sleep-Mode Logic 1 = Enable Sleep-Mode (the internal clock of the channel is switched off)
5	Reserved	Reserved
6	Reserved	Reserved
7	Reserved	Reserved

Bit[0]

Enable

FIFO

Bit[2]

Flush

THR

Bit[1]

Flush

RHR

FIFO Control Register:

The FCR controls the UART behavior in various modes.

Register: Description Offset: Permission		FCR FIFO Control Register 2 Write			
	Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]
		HR er Level	Reserved		Reserved

Bit	Name	Description
0	Enable FIFO Mode	Logic 0 = Byte Mode Logic 1 = FIFO Mode
1	Flush RHR	Logic 0 = No change Logic 1 = Flushes the contents of RHR. This is operative only in FIFO Mode. The RHR is automatically flushed whenever changing between Byte Mode and FIFO Mode. The bit will return to zero after clearing the FIFOs.
2	Flush THR	Logic 0 = No change Logic 1 = Flushes the content of the THR, in the same manner as FCR[1] does the RHR
3	Reserved	Reserved
5, 4	Reserved	Reserved
7, 6	RHR Trigger Level	See the table below.

FCR[7:6] RHR Trigger Level:

In 550 mode, the receiver FIFO trigger levels are defined using FCR[7:6]. The interrupt trigger level & flow control trigger level where appropriate are defined by L2 in the table below. L1 defines lower flow control trigger levels that introduce a hysteresis element in hardware RTS/CTS flow control.

In Byte Mode (450 Mode) the trigger levels are all set to 1.

FCR[7:6]	550 Mode (FIFO = 16)		
	<u>L1</u>	L2	
2'b00	1	1	
2'b01	1	4	
2'b10	1	8	
2'b11	1	14	

Interrupt Status Register:

The source of the highest priority interrupt pending is indicated by the contents of the Interrupt Status Register (ISR). There are five sources of interrupts, and four levels of priority (1 is the highest) as tabulated below.

Level	Interrupt Source	ISR[5:0]
-	No interrupt pending	6'b000001
1	Receiver Status Error	6'b000110
I	or address bit detected in 9-bit mode	01100000
2a	Receiver Data Available	6'b000100
2b	Receiver Time Out	6'b001100
3	Transmitter THR Empty	6'b000010
4	Modem Status Change	6'b000000

Note: ISR[0] indicates whether any interrupt is pending

Register:		ISR				
Description	1:	Interrupt Status Register				
Offset:		2				
Permission	s:	Read				
	Bit[7]	Bit[6]	Bit[5]			

Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
FIF	Os	Interrupt	t Priority	In	terrupt Priori	ty	Interrupt
Ena	bled	(Enhanced Mode)			(All Modes)		Pending

Interrupt Descriptions:

Level1: Receiver Status Error

Normal Mode: This interrupt is active whenever any of the LSR[1], LSR[2], LSR[3] or LSR[4] are set. These flags are cleared following a read of the LSR. The interrupt is masked with IER[2].

Level 2a: Receiver Data Available

The interrupt is active whenever the receiver FIFO level is above the interrupt trigger level.

Level 2b: Receiver Time-Out

A receiver time out event, (which may cause an interrupt) will occur when all of the following conditions are true:

- The UART is in the FIFO Mode.
- There is data in the RHR
- There has been no read of the RHR for a period of time greater than the timeout period. The timeout period of time is greater than the time out period. The time out period is four times the character period (including start & stop bits) measured from the centre of the first stop bit of the first data item received.

Reading the first data item in RHR clears this interrupt.

Level 3: Transmitter Empty

This interrupt is set when the transmit FIFO level falls below the trigger level. It is cleared on the ISR read to Level-3 interrupt or by writing more data to the THR so that the trigger level is exceeded.

Level 4: Modem Change

This interrupt is set by the modem change flag (MSR[0], MSR[1], MSR[2] or MSR[3]) becoming active due to changes in the input modem lines. This interrupt is cleared following the read of the MSR register.

MCS7720 USB 1.1 to Dual Serial Controller

Line Control Register:

The LCR specifies the data format that is common to both transmitter and receiver.

Offset: Permissi Access C	on: ons: Condition:	Line Contro 3 Read/Write LCR[7] =0	di Register						
	Bit[7]	Bit[6]	Bit[5]	Bit[4]		Bit[3]	Bit[2]	Bit[1] Bit[0]	
	DLE	Тx	Force	Odd/Ev		Parity	Number		
		Break	Parity	Parity	/	Enable	Stop Bits	s Length	
LCR[1:0]:	Determines t characters.	he data lengt	n of serial			LCR[1:0	1	Data Length	
2'b00 5 bits									
2'b01 6 bits									
LCR[2]: Defines the number of stop bits per serial 2'b10 7 bits									
character. 2'b11 8 bits									
						1 6,	7,8	2	
L	comm	transmission the transmit T) low to alert nunications ch	er data outpu the annel. It is th	ne					
L	ogic 0: Break ogic 1: Forces (SOU comm respo	transmission the transmitt T) low to alert nunications ch nsibility of the	er data outpu the annel. It is the software driv	ne /er	L	-CR[5:3]	F	Parity Type	
L	ogic 0: Break ogic 1: Forces (SOU comm respo to ens	transmission s the transmitt T) low to alert nunications ch nsibility of the sure that the b	er data outpu the annel. It is the software driv preak duration	ne /er n is		3'bxx0		No parity	
L	ogic 0: Break ogic 1: Forces (SOU comm respo to ens longe	transmission s the transmitt T) low to alert nunications ch nsibility of the sure that the b r than the cha	er data output the annel. It is the software driv preak duration racter period	ne ver n is for		3'bxx0 3'b001		No parity Odd parity	
L	ogic 0: Break ogic 1: Forces (SOU comm respo to ens longe it to b	transmission the transmitt T) low to alert nunications ch nsibility of the sure that the b r than the cha e recognized	er data output the annel. It is the software driv preak duration racter period remotely as a	ne ver n is for		3'bxx0 3'b001 3'b011	I	No parity Odd parity Even parity	
L	ogic 0: Break ogic 1: Forces (SOU comm respo to ens longe it to b	transmission s the transmitt T) low to alert nunications ch nsibility of the sure that the b r than the cha	er data output the annel. It is the software driv preak duration racter period remotely as a	ne ver n is for		3'bxx0 3'b001	l Parit	No parity Odd parity	

USB 1.1 to Dual Serial Controller

Modem Cor	ntrol Reg	jister:										
Register: Description Offset: Permission		4	m Conti /Write	rol Reg	ister							
	Bit[7]	Bit[6]	Bit	[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]			
						Mode		2.4[.]				
	Unu	Unused CTS/I Flow C			Internal Loop Back Enable	Out2 (Interrupt Enable)	Out1	RTS	DTR			
	Bit	Nai	ne		Description							
	0	DT	R	Logic 0 = Forces DTR# output to inactive (high) Logic 1 = Forces DTR# output to active (low)								
	1	RT	S		Logic 0 = Forces RTS# output to inactive (high) Logic 1 = Forces RTS# output to active (low)							
	2	Ou	it1	Unuse	d							
	3	Ou	lt2	Unuse	d							
	4	Inter Loop Ena	Back		0 = Normal ope 1 = Enable Loc	erating mode al Loop-Back Mode						
	5	CTS/ flow co	-			ow control Disabled in ow control Enabled in						
	6	Unu	sed	Unuse	d							
	7	Unu	sed	Unuse	d							

Line Status Register:

7

Error

This register provides the status of the data transfer to the CPU.

Register: Descriptior Offset: Permission Access Con	s:	LSR Line Status 5 Read on: LCR[7] =0, /	-									
	B	it[7] Bit[6]	Bit[5]	Bit[5] Bit[4] Bit[3] Bit[2] Bit[1]								
		ata Tx	THR	Rx	Framing	Parity	Overrun	RxRdy				
	E	rror Empty	Empty	Break	Error	Error	ovenun	TUNITUY				
					_							
	Bit	Name				cription						
	0	RHR Data Available	Logic $0 = RI$			ia availabla ta ba	reed					
		Data Available		Logic 1 = RHR is not empty, data is available to be read								
		RHR		Logic 0 = No overrun error Logic 1 = Data was received when the RHR was full, An overrun								
	1	Overrun	has occurred. The error is flagged when the data would									
		Ovenun	normally have been transferred to the RHR.									
			Logic 0 = No parity error in received data, or 9^{th} bit is "0" in 9-bit									
	2	Received Data		mode.								
		Parity Error	Logic 1 = Da	Logic 1 = Data has been received that did not have correct parity								
	3	Received Data	Logic $0 = Nc$				•					
	5	Framing Error				with an invalid s	top bit.					
	4	Received Break	Logic $0 = Nc$									
		Error	Logic $1 = th$									
	5	THR	Logic $0 = Tr$									
		Empty	Logic $1 = Tr$									
	~	Transmitter & THR	Logic $0 = Th$									
	6	Empty				smitter has com		naracter				
						is in the idle mod		orit				
		Receiver Data				iver data errors i ead of LSR	ii uie FIFO,					
	7	Neceiver Dala	vv	as ciealed	i by earlier i	Cau UI LON						

Note : A break condition occurs when the SIN line goes low and stays low through out the start, data, parity & first stop bits. One zero character associated with break flag set will be transferred to the RHR and the receiver will then wait until the SIN line returns high. The LSR[4] flag break flag is set when this data item gets to the top of the RHR and it is cleared following the read to the LSR.

the FIFO.

Logic 1 = At least one parity error, framing error or break indication in

Modem Status Register:

This register provides the status of the modem control lines to CPU.

Register:MSRDescription:Modem SiOffset:6Permissions:Read			tus Registe	r				
	Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
	DCD	RI	DSR	CTS	Delta DCD	Trailing Edge RI	Delta DSR	Delta CTS

Bit	Name	Description
		Logic 0 = no change in the CTS signal
0	Delta CTS	Logic 1 = indicates that the CTS input has changed since the last time the
		MSR was read
		Logic 0 = no change in the DSR signal
1	Delta DSR	Logic 1 = indicates that the DSR input has changed since the last time the
		MSR was read
	Trailing Edge	Logic 0 = no change in the RI signal
2	RI	Logic 1 = indicates that the RI input has changed from low to high since the
		last time the MSR was read
		Logic 0 = no change in the DCD signal
3	Delta DCD	Logic 1 = indicates that the DCD input has changed since the last time the
		MSR was read
4	CTS	Logic 0 = CTS# line is 1
т 	010	Logic 1 = CTS# line is 0
5	DSR	Logic 0 = DSR# line is 1
Ŭ	DOIN	Logic 1 = DSR# line is 0
6	RI	Logic 0 = RI# line is 1
0		Logic 1 = RI# line is 0
7	DCD	Logic 0 = DCD# line is 1
'	000	Logic 1 = DCD# line is 0

Scratch Pad Register:

The scratch pad register does not effect operation of the rest of the UART in any way and can be used for the temporary data storage.

Register: Description: Offset: Permissions:		SPR Scratch Pac 7 Read/Write	I Register					
	Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
				Scratch Pa	ad Register			

USB 1.1 to Dual Serial Controller

Divisor Latch Registers:

The divisor latch registers (DLL & DLM) are used to program the baud rate divisor. This is a value between 1 and 65535 by which the input clock is divided in order to generate serial Baud Rates. After a hardware Reset, the Baud Rate used by the transmitter & receiver is given by:

Baud Rate = Input Clock / 16 * Divisor

where divisor is given by: (256 * DLM) + DLL

Note: More flexible Baud Rate generation options are also available. These require the use of Advanced Features in other registers however.

Register: Descriptior Offset: Permissior Access Co	IS:	DLL Divisor Late 0 Read/Write LCR[7] =1	ch Register					
	Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
	Least significant Byte for divisor latch							
Description: Offset: Permissions:		DLM Divisor Late 1 Read/Write LCR[7] =1	ch Register					
	Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
			Most s	significant By	te for diviso	r latch		

	Baud Rate	DLM (Hex)	DLL (Hex)
	115.2K	00	01
	57.6K	00	02
	38.4K	00	03
Baud Rate Generator	19.2K	00	06
Programming Table	9600	00	0C
	2400	00	30
	1200	00	60
	600	00	C0
	300	01	80
	150	03	00
	50	09	00

USB 1.1 to Dual Serial Controller

Master Reset Values

Register	BIT-7	BIT-6	BIT-5	BIT-4	BIT-3	BIT-2	BIT-1	BIT-0
RHR	0	0	0	0	0	0	0	0
THR	Х	Х	Х	Х	Х	Х	Х	Х
IER	0	0	0	0	0	0	0	0
FCR	0	0	0	0	0	0	0	0
lir	0	0	0	0	0	0	0	1
LCR	0	0	0	0	0	0	0	0
MCR	0	0	0	0	0	0	0	0
LSR	0	1	1	0	0	0	0	0
MSR	Х	Х	Х	Х	0	0	0	0
SPR	0	0	0	0	0	0	0	0

4.5 to 5.5 Volts

0 to 5.5 Volts

0° C to +70° C 0° C to +115° C

Electrical Characteristics

Absolute Maximum Ratings

Supply Voltage 6 Volts Input Voltage (I/O) -0.3 to V_{cc} +0.3 -60° C to +150° C Storage Temperature

Recommended Operating Conditions

Supply Voltage Input Voltage (I/O) Ambient Operating Temperature (free air) Junction Operating Temperature

Static Characteristics (Supply Pins)

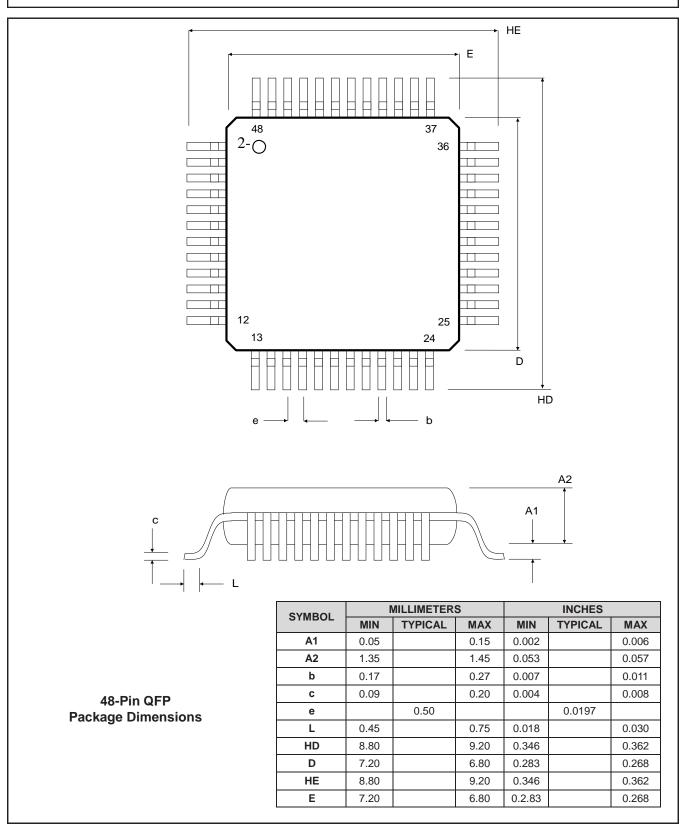
 V_{cc} = 4.5V to 5.5V; GND = 0V; Temp = 0 to +70° C; unless otherwise specified

Symbol	Parameter	Conditions	Min	Typical	Мах	Unit
V _{reg} (3.3V)	Regulated Supply Voltage		3.0	3.3	3.6	V
I _{cc}	Operating Supply Current		-	18	-	mA

Static Characteristics

 V_{cc} = 4.5V to 5.5V; GND = 0V; Temp = 0 to +70° C; unless otherwise specified

Symbol	Parameter	Conditions	Min	Typical	Мах	Unit
V _{IL}	LOW Level Input Voltage		-	-	0.3*Vcc	V
V _{IH}	HIGH Level Input Voltage		0.7*Vcc	-	-	V
V _{th} (LH)	Positive going Threshold Voltage		-	3.22	-	V
V _{th} (HL)	Negative going Threshold Voltage		-	1.84	-	V
I _{LI}	Input Leakage Current		-	-	±1	μA
I _{oz}	Tri-State Leakage Current		-	-	±10	μA
V _{ol}	Output Voltage (Low)		-	-	0.4	V
V _{OH}	Output Voltage (High)		3.5	-	-	V


Dynamic Characteristics – Analog I/O Pins (DP, DM); Full-Speed Mode $V_{cc} = 4.5V$ to 5.5V; GND = 0V; Temp = 0 to +70° C; unless otherwise specified

Symbol	Parameter	Condition	Min	Typical	Мах	Unit
T _{FR}	Rise Time	С _L = 50pF 10% to 90% of V _{OH} - V _{OL}	4	-	20	nS
T _{FF}	Fall Time	$C_{L} = 50 pF$ 10% to 90% of $ V_{OH} - V_{OL} $	4	-	20	nS
						•

Copyright © 2002-2011 ASIX Electronics Corporation. All rights reserved.

USB 1.1 to Dual Serial Controller

Copyright © 2002-2011 ASIX Electronics Corporation. All rights reserved.

IMPORTANT NOTICE

Copyright © 2002-2011 ASIX Electronics Corporation. All rights reserved.

DISCLAIMER

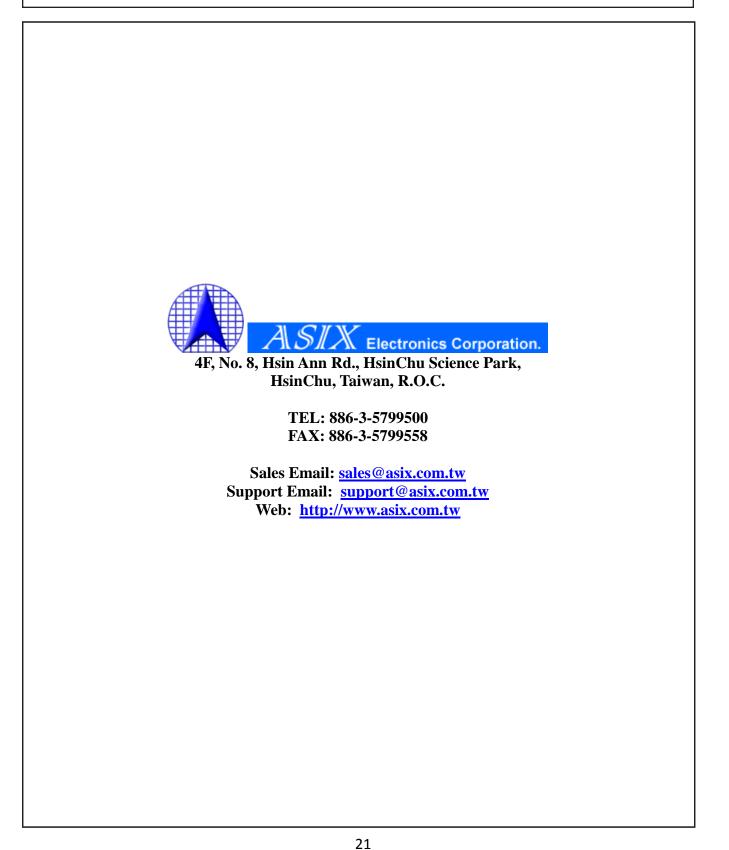
No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, for any purpose, without the express written permission of ASIX. ASIX may make changes to the product specifications and descriptions in this document at any time, without notice.

ASIX provides this document "as is" without warranty of any kind, either expressed or implied, including without limitation warranties of merchantability, fitness for a particular purpose, and non-infringement.

Designers must not rely on the absence or characteristics of any features or registers marked "reserved", "undefined" or "NC". ASIX reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. Always contact ASIX to get the latest document before starting a design of ASIX products.

TRADEMARKS

ASIX, the ASIX logo are registered trademarks of ASIX Electronics Corporation. All other trademarks are the property of their respective owners.



USB 1.1 to Dual Serial Controller

Revision History		
Revision	Date	Comment
1.0	7-Nov-2002	Preliminary Release
1.1	27-Mar-2006	Revised Data Sheet
2.00	2011/08/05	 Changed to ASIX Electronics Corp. logo, strings and contact information. Added ASIX copyright legal header information. Modified the Revision History table format. Updated the block diagram.
2.01	2011/11/01	1. Updated the ordering information.

MCS7720 USB 1.1 to Dual Serial Controller

