

CGHV1F025S 25 W, DC - 15 GHz, 40V, GaN HEMT

Cree's CGHV1F025S is an unmatched, gallium nitride (GaN) high electron mobility transistor (HEMT) designed specifically for high efficiency, high gain and wide bandwidth capabilities. The device can be deployed for L, S, C, X and Ku-Band amplifier applications. The datasheet specifications are based on a X-Band (8.9 - 9.6 GHz) amplifier. The CGHV1F025S operates on a 40 volt rail circuit while housed in a 3mm x 4mm, surface mount, dual-flat-no-lead (DFN) package. Under reduced power, the transistor can operate below 40V to as low as 20V V_{DD} maintaining high gain and efficiency.

Package Type: 3x4 DFN PN: CGHV1F025S

Typical Performance 8.9 - 9.6 GHz ($T_c = 25^{\circ}c$), 40 V

Parameter	8.9 GHz	9.2 GHz	9.4 GHz	9.6 GHz	Units
Output Power @ $P_{IN} = 37 \text{ dBm}$	24	29	27	25	W
Drain Efficiency @ $P_{IN} = 37 \text{ dBm}$	43.5	48.5	48	46	%
Gain @ $P_{IN} = 0 \text{ dBm}$	10.7	11.6	11.3	11.1	dB

Note:

Measured in the CGHV1F025S-TB1 application circuit. Pulsed 100 μs 10% duty.

Features

- Up to 15 GHz Operation
- 25 W Typical Output Power
- 11 dB Gain at 9.4 GHz
- Application circuit for 8.9 9.6 GHz

Absolute Maximum Ratings (not simultaneous) at 25°C Case Temperature

Parameter	Symbol	Rating	Units	Notes
Drain-Source Voltage	V _{DSS}	100	Volts	25°C
Gate-to-Source Voltage	V _{gs}	-10, +2	Volts	25°C
Storage Temperature	T _{stg}	-65, +150	°C	
Operating Junction Temperature	T,	225	°C	
Maximum Forward Gate Current	I _{gmax}	4.8	mA	25°C
Maximum Drain Current ¹	I _{dmax}	2	А	25°C
Soldering Temperature ²	Τ _s	245	°C	
Case Operating Temperature ^{3,4}	T _c	-40, +150	°C	
Thermal Resistance, Junction to Case⁵	R _{eJC}	3.4	°C/W	85°C

Note:

¹ Current limit for long term, reliable operation

² Refer to the Application Note on soldering at <u>www.cree.com/rf/document-library</u>

³ Simulated at $P_{DISS} = 2.4 \text{ W}$

 ${}^{4}T_{c}$ = Case temperature for the device. It refers to the temperature at the ground tab underneath the package. The PCB will add additional thermal resistance.

⁵Pulsed (100 μ s, 10% Duty). Rth for Cree's reference design using a 10 mil Rogers 5880 PCB with 31 (Ø13 mil) Vias would be 3.6 °C/W. For CW operation, the Rth numbers increase to 5°C/W for just the device, and 7.3 °C/W including the board.

Electrical Characteristics ($T_c = 25^{\circ}C$) - 40 V Typical

					-	
Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics ¹						
Gate Threshold Voltage	$V_{\rm GS(th)}$	-3.8	-3.0	-2.3	V _{DC}	$V_{_{\rm DS}}$ = 10 V, $I_{_{\rm D}}$ = 4.8 mA
Gate Quiescent Voltage	$V_{GS(Q)}$	-	-2.7	-	V _{DC}	$V_{_{\rm DS}}$ = 40 V, $I_{_{\rm D}}$ = 240 mA
Saturated Drain Current ²	I _{DS}	3.8	-4.3	-	А	$V_{_{DS}}$ = 6.0 V, $V_{_{GS}}$ = 2.0 V
Drain-Source Breakdown Voltage	V _{(BR)DSS}	100	-	-	$V_{\rm DC}$	$V_{_{\rm GS}}$ = -8 V, $I_{_{\rm D}}$ = 4.8 mA
RF Characteristics ³ ($T_c = 25^{\circ}C, F_0 = 0$	6.0 GHz unl	ess otherw	ise noted)			
Gain	G	-	16	-	dB	$V_{_{DD}}$ = 40 V, $I_{_{DQ}}$ = 150 mA, $P_{_{\rm IN}}$ = 0 dBm
Output Power ⁴	P _{OUT}	-	29	-	W	$V_{_{\rm DD}}$ = 40 V, $I_{_{\rm DQ}}$ = 150 mA, $P_{_{\rm IN}}$ = 34 dBm
Drain Efficiency ⁴	η	-	55	-	%	$V_{_{\rm DD}}$ = 40 V, $I_{_{\rm DQ}}$ = 150 mA, $P_{_{\rm IN}}$ = 34 dBm
Output Mismatch Stress ⁴	VSWR	-	10:1	-	Ψ	No damage at all phase angles, $V_{_{\rm DD}}$ = 40 V, $I_{_{\rm DQ}}$ = 150 mA, $P_{_{\rm OUT}}$ = 29 W
Dynamic Characteristics						
Input Capacitance ⁵	C _{GS}	-	5.9	-	pF	$V_{_{DS}}$ = 40 V, $V_{_{gs}}$ = -8 V, f = 1 MHz
Output Capacitance ⁵	C _{DS}	-	2	-	pF	$V_{_{DS}}$ = 40 V, $V_{_{gs}}$ = -8 V, f = 1 MHz
Feedback Capacitance	C _{GD}	-	0.21	-	pF	$V_{_{DS}}$ = 40 V, $V_{_{gs}}$ = -8 V, f = 1 MHz

Notes:

2

¹ Measured on wafer prior to packaging

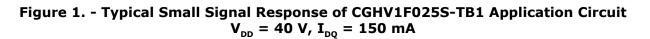
² Scaled from PCM data

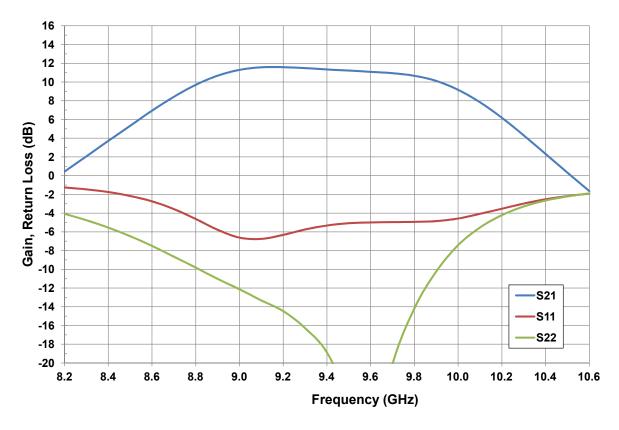
- ³ Measured in CGHV1F025S-TB
- $^{\scriptscriptstyle 4}$ Pulsed 100 $\mu s,$ 10% duty cycle
- ⁵ Includes package

Copyright © 2014 - 2015 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.869.2733 Fax: +1.919.869.2733 www.cree.com/rf

Electrical Characteristics When Tested in CGHV1F025S-TB1

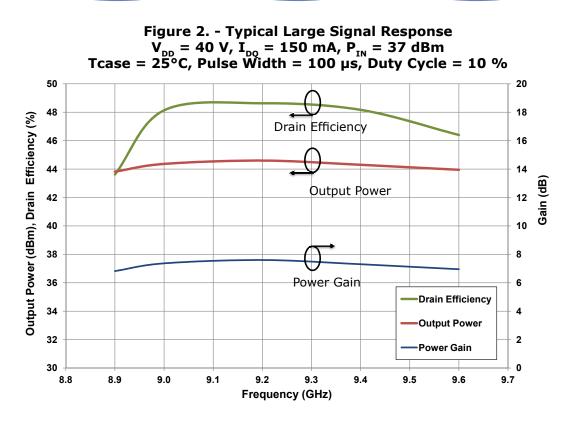

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
RF Characteristics ¹ ($T_c = 25^{\circ}C, F_0 = 8.9 - 9.6$ GHz unless otherwise noted)						
Gain	G	-	11.6	-	dB	$V_{_{DD}}$ = 40 V, $I_{_{DQ}}$ = 150 mA, $P_{_{\rm IN}}$ = 0 dBm
Output Power ²	P _{OUT}	-	29	-	W	$V_{_{\rm DD}}$ = 40 V, $I_{_{\rm DQ}}$ = 150 mA, $P_{_{\rm IN}}$ = 37 dBm
Drain Efficiency ²	η	-	48.5	-	%	$V_{_{\rm DD}}$ = 40 V, $I_{_{\rm DQ}}$ = 150 mA, $P_{_{\rm IN}}$ = 37 dBm
Output Mismatch Stress ²	VSWR	-	10:1	-	Ψ	$V_{_{\rm DS}}$ = 40 V, $V_{_{\rm gs}}$ = -8 V, $P_{_{\rm OUT}}$ = 25 W

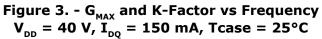

Notes:

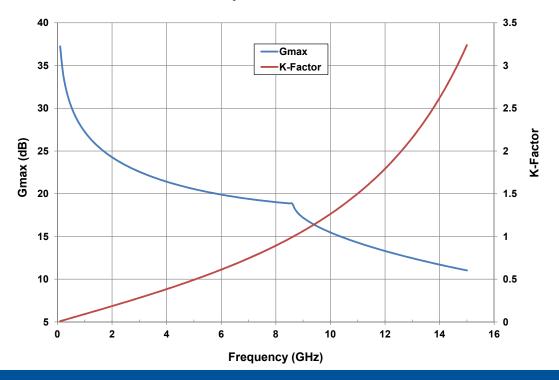
¹ Measured in CGHV1F025S-TB1 Application Circuit

 2 Pulsed 100 µs, 10% duty cycle

Typical Performance - CGHV1F025S-TB1




Copyright © 2014 - 2015 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.


Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/rf

Typical Performance in Application Circuit CGHV1F025S-TB1

Copyright © 2014 - 2015 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

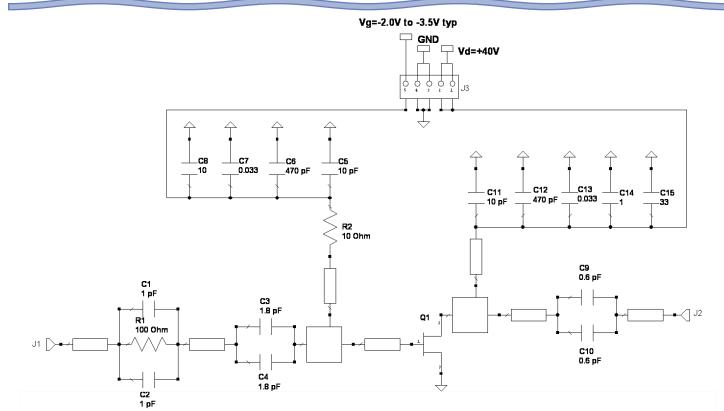
Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 Fax: +1.919.869.2733

CGHV1F025S-TB1 Application Circuit Bill of Materials

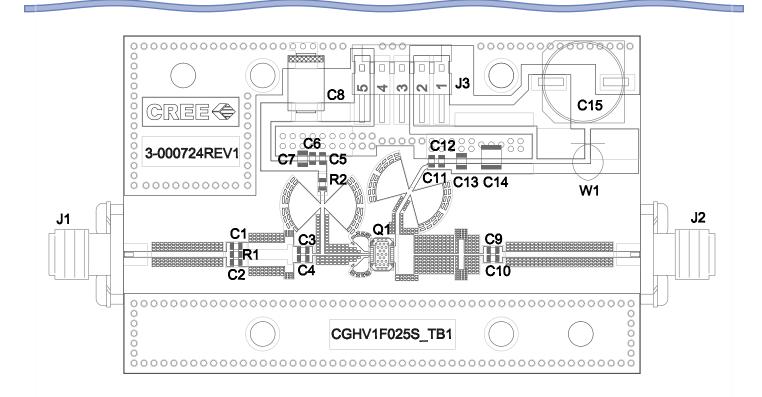
Designator	Description	Qty
R1	RES, 100, OHM, +1/-1%, 1/16 W, 0603	1
R2	RES, 10, OHM, +1/-1%, 1/16 W, 0603	1
C1, C2	CAP, 1pF, ±0.1 pF, 0603, ATC	2
C3, C4	CAP, 1.8pF, ±0.1 pF, 0603, ATC	2
C9, C10	CAP, 0.6pF, ±0.1 pF, 0603, ATC	2
C5, C11	CAP, 10 pF, ±5%, 0603, ATC	1
C6, C12	CAP, 470 pF, 5%, 100 V, 0603, X	2
C7, C13	CAP, 33000 pF, 0805, 100V, X7R	2
C14	CAP, 1.0 UF, 100V, 10%, X7R, 1210	1
C8	CAP, 10 UF, 16V TANTALUM	1
C15	CAP, 33UF, 20%, G CASE	1
J1, J2	CONN, SMA, PANEL MOUNT JACK, FLANGE	2
J3	HEADER RT>PLZ .1CEN LK 5POS	1
Q1	QFN TRANSISTOR CGHV1F025S	1
W1	CABLE, 18 AWG, 4.2	1
	Rogers 5880 PCB 10 mils	1

CGHV1F025S-TB1 Application Circuit

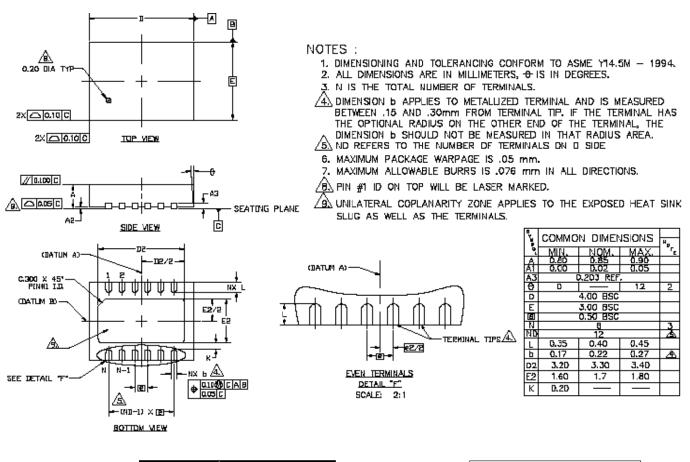
Electrostatic Discharge (ESD) Classifications

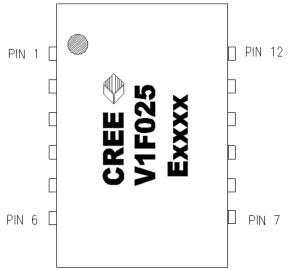

Parameter	Symbol	Class	Test Methodology
Human Body Model	НВМ	1A (> 250 V)	JEDEC JESD22 A114-D
Charge Device Model	CDM	2 (125 V to 250 V)	JEDEC JESD22 C101-C

Copyright © 2014 - 2015 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.


Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/rf

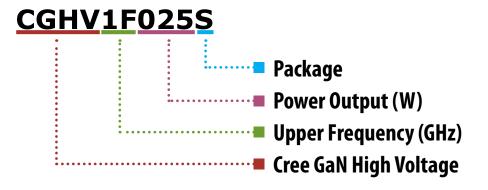
CGHV1F025S-TB1 Application Circuit Schematic


CGHV1F025S-TB1 Application Circuit Outline


co pyright © 2014 - 2015 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc. Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/rf

Product Dimensions CGHV1F025S (Package 3 x 4 DFN)

Pin	Input/Output
1	GND
2	RF IN
3	RF IN
4	RF IN
5	RF IN
6	GND
7	GND
8	RF OUT
9	RF OUT
10	RF OUT
11	RF OUT
12	GND



Cree, Inc. 4600 Silicon Drive e. Cree Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/rf

Copyright © 2014 - 2015 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

Part Number System

Parameter	Value	Units
Upper Frequency ¹	15.0	GHz
Power Output	25	W
Package	Surface Mount	-

Note¹: Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Character Code	Code Value
А	0
В	1
С	2
D	3
E	4
F	5
G	6
Н	7
J	8
К	9
Examples:	1A = 10.0 GHz 2H = 27.0 GHz

Table 2.

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/rf

Copyright © 2014 - 2015 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

CGHV1F025S Rev 0.2 - Preliminary

Disclaimer

Specifications are subject to change without notice. Cree, Inc. believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Cree for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Cree. Cree makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Cree in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Cree products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Cree product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For more information, please contact:

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 www.cree.com/rf

Sarah Miller Marketing Cree, RF Components 1.919.407.5302

Ryan Baker Marketing Cree, RF Components 1.919.407.7816

Tom Dekker Sales Director Cree, RF Components 1.919.313.5639

Copyright © 2014 - 2015 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.869.2733 Fax: +1.919.869.2733 www.cree.com/rf