

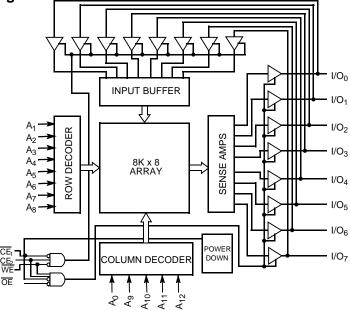
CY7C185

Features

- · High speed
- 15 ns
- Fast t_{DOE}
- · Low active power
 - 715 mW
- · Low standby power
 - 85 mW
- · CMOS for optimum speed/power
- Easy memory expansion with CE₁, CE₂ and OE features
- TTL-compatible inputs and outputs
- Automatic power-down when deselected
- Available in non Pb-free 28-pin (300-Mil) Molded SOJ, 28-pin (300-Mil) Molded SOIC and both Pb-free and non Pb-free in 28-pin (300-Mil) Molded DIP

8K x 8 Static RAM

Functional Description^[1]


The CY7C185 is a high-performance CMOS static RAM organized as 8192 words by 8 bits. Easy memory expansion is provided by an active LOW chip enable (CE1), an active HIGH chip enable (CE₂), and active LOW output enable (OE) and tri-state drivers. This device has an automatic power-down feature (\overline{CE}_1 or CE_2), reducing the power consumption by 70% when deselected. The CY7C185 is in a standard 300-mil-wide DIP, SOJ, or SOIC package.

An active LOW write enable signal (WE) controls the writing/reading operation of the memory. When \overline{CE}_1 and \overline{WE} inputs are both LOW and CE_2 is HIGH, data on the eight data input/output pins (I/O₀ through I/O₇) is written into the memory location addressed by the address present on the address pins (A₀ through A₁₂). Reading the device is accomplished by selecting the device and enabling the outputs, TE1 and OE active LOW, CE2 active HIGH, while WE remains inactive or HIGH. Under these conditions, the contents of the location addressed by the information on address pins are present on the eight data input/output pins.

The input/output pins remain in a high-impedance state unless the chip is selected, outputs are enabled, and write enable (WE) is HIGH. A die coat is used to insure alpha immunity.

Gľ

Logic Block Diagram

Pin Configurations

DIP/SOJ Top View

	TOP VI	
NC	1	28 🛛 V _{CC}
A ₄	2	27 WE
A ₅	3	26 CE2
A ₆	4	25 🗆 A ₃
A7 [5	24 🗆 A ₂
A ₈	6	23 A ₁
Ag 🗌	7	22 🗆 OE
A ₁₀	8	21 🗆 <u>A</u> 0
A ₁₁	9	20 CE1
A ₁₂	10	19 I/O7
I/O ₀	11	18 🛛 I/O ₆
I/O ₁	12	17 🗖 I/O ₅
I/O ₂	13	16 🗆 I/O ₄
GND	14	15 I/O3

Selection Guide

	-15	-20	-25	-35
Maximum Access Time (ns)	15	20	25	35
Maximum Operating Current (mA)	130	110	100	100
Maximum CMOS Standby Current (mA)	15	15	15	15

Notes:

1. For guidelines on SRAM system design, please refer to the 'System Design Guidelines' Cypress application note, available on the internet at www.cypress.com.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	–65°C to +150°C
Ambient Temperature with Power Applied	–55°C to +125°C
Supply Voltage to Ground Potential	–0.5V to +7.0V
DC Voltage Applied to Outputs in High Z State ^[2]	–0.5V to +7.0V
DC Input Voltage ^[2]	–0.5V to +7.0V

Electrical Characteristics Over the Operating Range

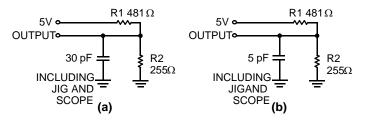
Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage (per MIL-STD-883, Method 3015)	>2001V

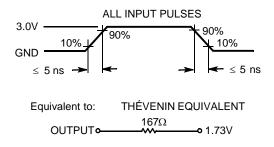
Operating Range

Range	Ambient Temperature	v _{cc}
Commercial	0°C to +70°C	$5V \pm 10\%$
Industrial	–40°C to +85°C	5V ± 10%

			-	-15		-20	-2	25, -35	
Parameter	Description	Test Conditions	Min.	Max.	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	V _{CC} = Min., I _{OH} = -4.0 mA	2.4		2.4		2.4		V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 8.0 mA		0.4		0.4		0.4	V
V _{IH}	Input HIGH Voltage		2.2	V _{CC} + 0.3V	2.2	V _{CC} + 0.3V	2.2	V _{CC} + 0.3V	V
V _{IL}	Input LOW Voltage ^[2]		-0.5	0.8	-0.5	0.8	-0.5	0.8	V
I _{IX}	Input Leakage Current	$GND \le V_I \le V_{CC}$	-5	+5	-5	+5	-5	+5	μΑ
I _{OZ}		$GND \le V_I \le V_{CC},$ Output Disabled	-5	+5	-5	+5	-5	+5	μΑ
I _{CC}	V _{CC} Operating Supply Current			130		110		100	mA
I _{SB1}	Power-Down	$\begin{array}{l} \underline{Ma} x. \ V_{CC}, \\ \overline{CE}_1 \geq V_{IH} \ \text{or} \ CE_2 \leq V_{IL} \\ \overline{Min. \ Duty \ Cycle} = 100\% \end{array}$		40		20		20	mA
I _{SB2}	Automatic Power-Down Current	$\begin{array}{l} \underline{Max}. \ V_{CC}, \\ \overline{CE}_1 \geq V_{CC} - 0.3V, \\ \text{or } CE_2 \leq 0.3V \\ \overline{V}_{IN} \geq V_{CC} - 0.3V \text{ or} \\ \overline{V}_{IN} \leq 0.3V \end{array}$		15		15		15	mA

Capacitance^[3]


Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_{A} = 25^{\circ}C, f = 1 MHz,$	7	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	7	pF

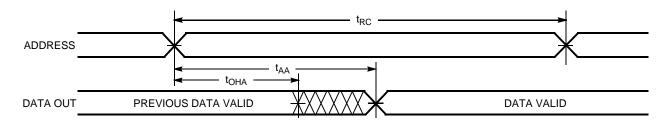

Notes:

Minimum voltage is equal to -3.0V for pulse durations less than 30 ns.
 Tested initially and after any design or process changes that may affect these parameters.

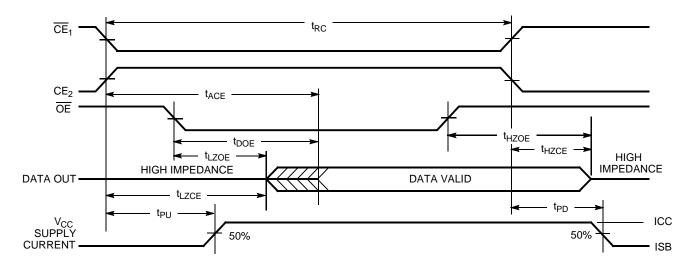
AC Test Loads and Waveforms

Switching Characteristics Over the Operating Range^[4]

		-'	15	-20		-25		-35		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cycle		-								
t _{RC}				20		25		35		ns
t _{AA}	Address to Data Valid		15		20		25		35	ns
t _{OHA}	Data Hold from Address Change	3		5		5		5		ns
t _{ACE1}	CE ₁ LOW to Data Valid		15		20		25		35	ns
t _{ACE2}	CE ₂ HIGH to Data Valid		15		20		25		35	ns
t _{DOE}	OE LOW to Data Valid		8		9		12		15	ns
t _{LZOE}	OE LOW to Low Z	3		3		3		3		ns
t _{HZOE}	OE HIGH to High Z ^[5]		7		8		10		10	ns
t _{LZCE1}	CE ₁ LOW to Low Z ^[6]	3		5		5		5		ns
t _{LZCE2}	CE ₂ HIGH to Low Z	3		3		3		3		ns
t _{HZCE}	$\frac{\overline{CE}_{1}}{CE_{2}}$ LOW to High Z ^[5, 6]		7		8		10		10	ns
t _{PU}	\overline{CE}_1 LOW to Power-Up CE ₂ to HIGH to Power-Up	0		0		0		0		ns
t _{PD}	CE ₁ HIGH to Power-Down CE ₂ LOW to Power-Down		15		20		20		20	ns
Write Cycle ^{[7}	7]	1		I				I		
t _{WC}	Write Cycle Time	15		20		25		35		ns
t _{SCE1}	CE ₁ LOW to Write End	12		15		20		20		ns
t _{SCE2}	CE ₂ HIGH to Write End	12		15		20		20		ns
t _{AW}	Address Set-up to Write End	12		15		20		25		ns
t _{HA}	Address Hold from Write End	0		0		0		0		ns
t _{SA}	Address Set-up to Write Start	0		0		0		0		ns
t _{PWE}	WE Pulse Width	12		15		15		20		ns
t _{SD}	Data Set-up to Write End	8		10		10		12		ns
t _{HD}	Data Hold from Write End	0		0		0		0		ns
t _{HZWE}	WE LOW to High Z ^[5]		7		7		7		8	ns
t _{LZWE}	WE HIGH to Low Z	3		5		5		5		ns


Notes:

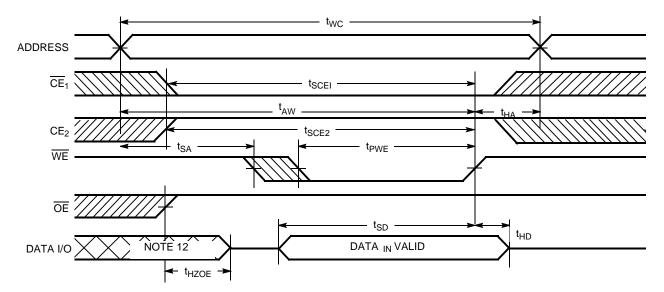
Notes:
4. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified lo_L/l_{OH} and 30-pF load capacitance.
5. t_{HZOE}, t_{HZCE}, and t_{HZWE} are specified with C_L = 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady state voltage.
6. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE1} and t_{LZCE2} for any given device.
7. The internal write time of the memory is defined by the overlap of CE₁ LOW, CE₂ HIGH, and WE LOW. All 3 signals must be active to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.



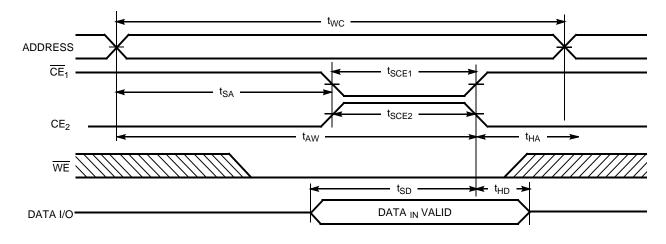
Switching Waveforms

Read Cycle No.1^[8,9]

Read Cycle No.2^[10,11]


Notes:

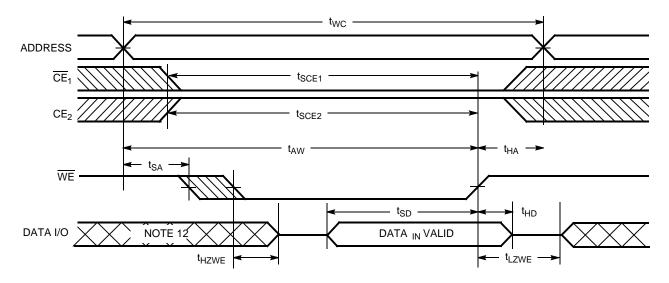
- Notes:
 8. <u>Device</u> is continuously selected. OE, CE₁ = V_{IL}. CE₂ = V_{IH}.
 9. WE is HIGH for read cycle.
 10. Data I/O is High Z if OE = V_{IH}, CE₁ = V_{IH}, WE = V_{IL}, or CE₂=V_{IL}.
 11. The internal write time of the memory is defined by the overlap of CE₁ LOW, CE₂ HIGH and WE LOW. CE₁ and WE must be LOW and CE₂ must be HIGH to initiate write. A write can be terminated by CE₁ or WE going HIGH or CE₂ going LOW. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.



Switching Waveforms (continued)

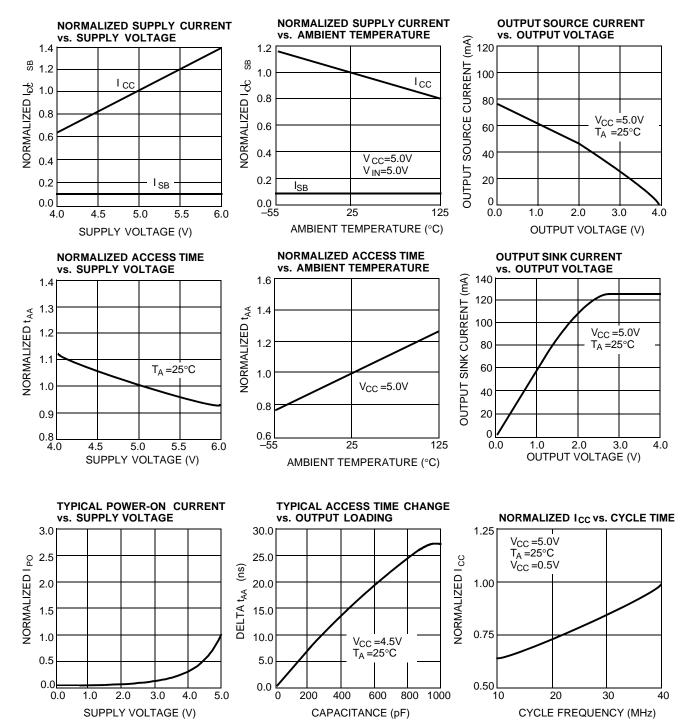
Write Cycle No. 1 (WE Controlled)^[9,11]

Write Cycle No. 2 (CE Controlled)^[11,12,13]


Notes:

During this period, the I/Os are in the output state and input signals should not be applied.
 The minimum write cycle time for write cycle #3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.

Switching Waveforms (continued)


Write Cycle No. 3($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW)^[11,12,13,14]

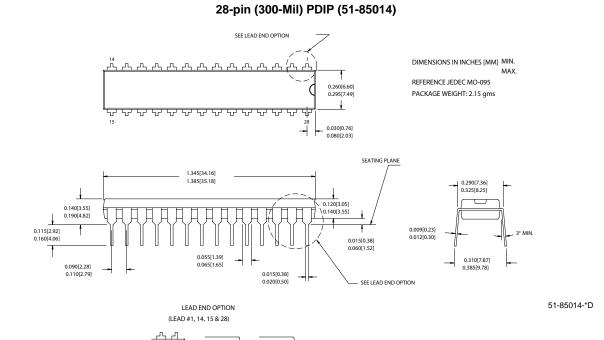
Note: 14. If \overline{CE}_1 goes HIGH or CE_2 goes LOW simultaneously with \overline{WE} HIGH, the output remains in a high-impedance state.

Typical DC and AC Characteristics

Truth Table

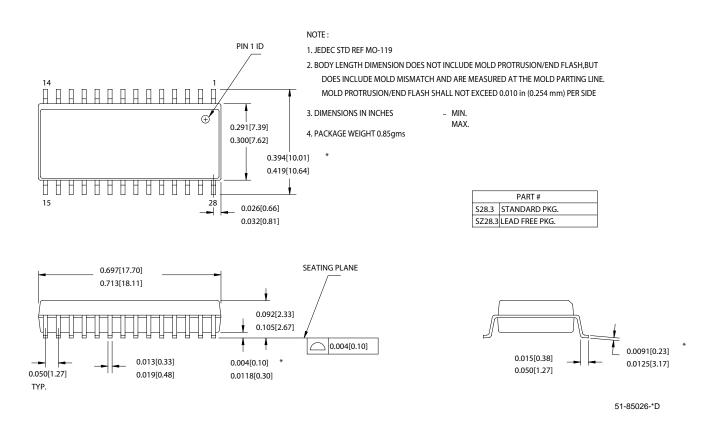
CE ₁	CE ₂	WE	OE	Input/Output	Mode
Н	Х	Х	Х	High Z	Deselect/Power-Down
Х	L	Х	Х	High Z	Deselect/Power-Down
L	Н	Н	L	Data Out	Read
L	Н	L	Х	Data In	Write
L	Н	Н	Н	High Z	Deselect

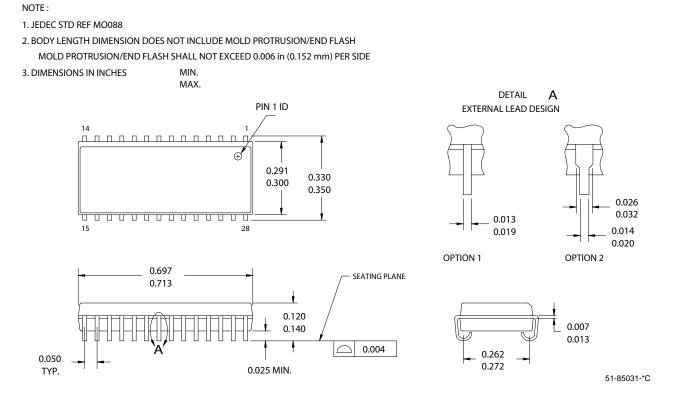
Address Designators


Address Name	Address Function	Pin Number
A4	X3	2
A5	X4	3
A6	X5	4
A7	X6	5
A8	X7	6
A9	Y1	7
A10	Y4	8
A11	Y3	9
A12	Y0	10
A0	Y2	21
A1	X0	23
A2	X1	24
A3	X2	25

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
15	CY7C185-15VC	51-85031	28-pin (300-Mil) Molded SOJ	Commercial
	CY7C185-15VI	_	28-pin (300-Mil) Molded SOJ	Industrial
20	CY7C185-20PC	51-85014	28-pin (300-Mil) Molded DIP	Commercial
	CY7C185-20PXC	_	28-pin (300-Mil) Molded DIP (Pb-free)	
	CY7C185-20VC	51-85031	28-pin (300-Mil) Molded SOJ	
25	CY7C185-25PC	51-85014	28-pin (300-Mil) Molded DIP	Commercial
	CY7C185-25VC	51-85031	28-pin (300-Mil) Molded SOJ	
35	CY7C185-35PC	51-85014	28-pin (300-Mil) Molded DIP	Commercial
	CY7C185-35SC	51-85026	28-pin (300-Mil) Molded SOIC	


Package Diagrams


Package Diagrams (continued)

28-pin (300-Mil) Molded SOIC (51-85026)

Package Diagrams (continued)

28-pin (300-Mil) Molded SOJ (51-85031)

All product and company names mentioned in this document may be the trademarks of their respective holders.

© Cypress Semiconductor Corporation, 2006. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Document History Page

Document Title: CY7C185 8K x 8 Static RAM Document Number: 38-05043						
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change		
**	107145	09/10/01	SZV	Change from Spec number: 38-00037 to 38-05043		
*A	116470	09/16/02	CEA	Add applications foot note to data sheet		
*B	486744	See ECN	NXR	Changed Low standby power from 220mW to 85mW Changed the description of I_{IX} from Input Load Current to Input Leakage Current in DC Electrical Characteristics table Removed I_{OS} parameter from DC Electrical Characteristics table Updated the Ordering Information table		