The documentation and process conversion measures necessary to comply with this revision shall be completed by 29 April 2013.

INCH-POUND

MIL-PRF-19500/543N 29 March 2013 SUPERSEDING MIL-PRF-19500/543M 22 September 2011

PERFORMANCE SPECIFICATION SHEET

SEMICONDUCTOR DEVICE, FIELD EFFECT TRANSISTORS, N-CHANNEL, SILICON REPETITIVE AVALANCHE, TYPES 2N6764, 2N6764T1, 2N6766, 2N6766T1, 2N6768, 2N6768T1, 2N6770, AND 2N6770T1, JAN, JANTX, JANTXV, JANS, JANHC, AND JANKC

This specification is approved for use by all Departments and Agencies of the Department of Defense.

The requirements for acquiring the product described herein shall consist of this specification sheet and MIL-PRF-19500.

1. SCOPE

1.1 <u>Scope</u>. This specification covers the performance requirements for N-channel, enhancement-mode, MOSFET, power transistors. Four levels of product assurance are provided for each encapsulated device type as specified in MIL-PRF-19500 and two levels of product assurance for each unencapsulated die, with avalanche energy ratings (EAS and EAR) and maximum avalanche current (IAR).

1.2 <u>Physical dimensions</u>. See figure 1 (TO-204AE for types 2N6764 and 2N6766; TO-204AA for types 2N6768 and 2N6770 (formerly TO-3)), see figure 2 (TO-254AA for types 2N6764T1, 2N6766T1; 2N6768T1, and 2N6770T1), and figures 3, 4, and 5 for JANHC and JANKC (die) dimensions.

1.3 <u>Maximum ratings</u>. ($T_A = +25^{\circ}C$, unless otherwise specified).

Туре	P _T (1) T _C = +25°C	P _T T _A = +25°C	R _θ JC (2)	V _{DS}	V _{DG}	V _{GS}	I _{D1} (3) (4) T _C = +25°C	١ _S	I _{D2} (3) (4) T _C = +100°C
	<u>W</u>	<u>W</u>	<u>°C/W</u>	<u>V dc</u>	<u>V dc</u>	<u>V dc</u>	<u>A dc</u>	<u>A dc</u>	<u>A dc</u>
2N6764, 2N6764T1 2N6766, 2N6766T1 2N6768, 2N6768T1 2N6770, 2N6770T1	150 150 150 150	4 4 4 4	0.83 0.83 0.83 0.83	100 200 400 500	100 200 400 500	±20 ±20 ±20 ±20	38.0 30.0 14.0 12.0	38.0 30.0 14.0 12.0	24.0 19.0 9.0 7.75

See notes on next page.

* Comments, suggestions, or questions on this document should be addressed to DLA Land and Maritime, ATTN: VAC, P.O. Box 3990, Columbus, OH 43218-3990, or emailed to <u>Semiconductor@dla.mil</u>. Since contact information can change, you may want to verify the currency of this address information using the ASSIST Online database at <u>https://assist.dla.mil/</u>.

AMSC N/A

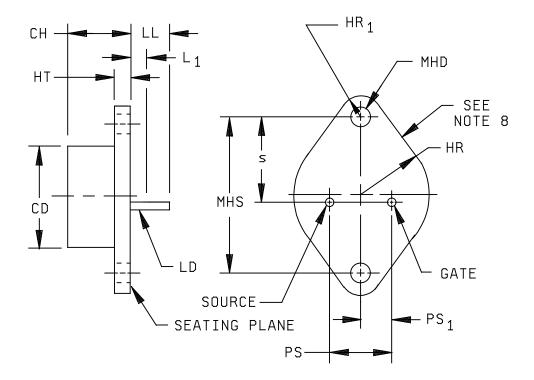
Туре	I _{DM} (5)	E _{AS}	E _{AR}	I _{AR} (5)	VISO 70,000 ft.	T _{STG} and		_{S(on)} ; (6) dc, I _D = I _{D2}
					attitude	Тј	TJ = +25°C	TJ = +150°C
	<u>A pk</u>	<u>A</u>	<u>mJ</u>	mJ		<u>°C</u>	$\underline{\Omega}$	Ω
2N6764, 2N6764T1 2N6766, 2N6766T1	152 120	150 500	15 15	38.0 30.0		-55 to	0.055 0.085	0.105 0.170
2N6768, 2N6768T1 2N6770, 2N6770T1	56 48	700 750	15 15	14.0 12.0	400 500	+150	0.300 0.400	0.750 1.000

1.3 Maximum ratings - Continued.

 Derate linearly 1.2 W/°C for T_C > +25°C.
 See figure 6, thermal impedance curves.
 The following formula derives the maximum theoretical I_D limit. I_D is also limited by package and internal wires:

$$I_{D} = \sqrt{\frac{T_{JM} - T_{C}}{\left(R_{\theta JC}\right) x \left(R_{DS}(on) at T_{JM}\right)}}$$

(4) See figure 7, maximum drain current graphs.

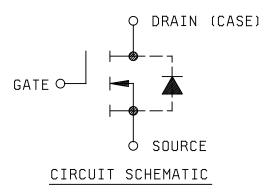

(5) $I_{DM} = 4 \times I_{D1}$ as calculated in note 2.

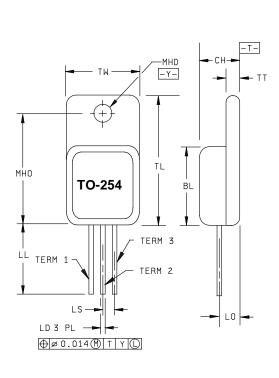
(6) Pulsed (see 4.5.1).

1.4 Primary electrical characteristics at $T_c = +25^{\circ}C$.

Туре	$\label{eq:constraint} \begin{array}{l} \mbox{Min } V_{(BR)DSS} \\ V_{GS} = 0 \\ \mbox{I}_D = 1.0 \mbox{mA} \\ \mbox{dc} \end{array}$	$\label{eq:VGS(TH)1} \begin{split} V_{GS(TH)1} \\ V_{DS} \geq V_{GS} \\ I_{D} = 0.25 \text{ mA dc} \end{split}$	$\label{eq:ldss} \begin{array}{c} Max \ I_{DSS1} \\ V_{GS} = 0 \\ V_{DS} = 80 \ percent \ of \ rated \ V_{DS} \end{array}$
2N6764, 2N6764T1 2N6766, 2N6766T1 2N6768, 2N6768T1 2N6770, 2N6770T1	<u>V dc</u> 100 200 400 500	<u>V dc</u> <u>Min Max</u> 2.0 4.0 2.0 4.0 2.0 4.0 2.0 4.0 2.0 4.0	<u>μA dc</u> 25 25 25 25 25

(1) Pulsed (see 4.5.1).



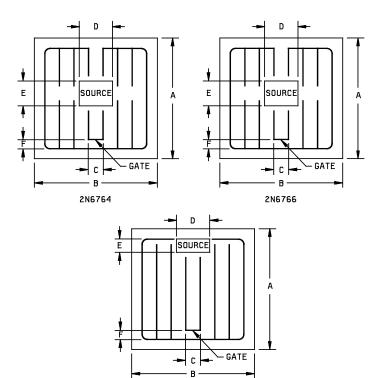

FIGURE 1. <u>Physical dimensions of transistor types 2N6764 and 2N6766, TO-204AE;</u> for types 2N6768 and 2N6770, TO-204AA.

	Dimensions							
Ltr	In	ches	Millir	neter	Notes			
	Min	Max	Min	Max				
CD		.875		22.23				
СН	.250	.360	6.35	9.15				
HR	.495	.525	12.57	13.3				
HR₁	.131	.188	3.33	4.78				
НТ	.060	.135	1.52	3.43				
LD	.057	.063	1.45	1.60	5			
	.038	.043	0.97	1.10	6			
LL	.312	.500	7.92	12.70				
L ₁		.050		1.27	3			
MHD	.151	.161	3.84	4.09	7			
MHS	1.177	1.197	29.90	30.40				
PS	.420	.440	10.67	11.18				
PS₁	.205	.225	5.21	5.72				
s	.655	.675	16.64	17.15				

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. These dimensions shall be measured at points .050 inch (1.27 mm) and .055 inch (1.40 mm) below the seating plane. When gauge is not used, measurement will be made at the seating plane.
- 4. The seating plane of the header shall be flat within .001 inch (0.03 mm) concave to .004 inch (0.10 mm) convex inside a .930 inch (23.62 mm) diameter circle on the center of the header and flat within .001 inch (0.03 mm) concave to .006 inch (0.15 mm) convex overall.
- 5. These dimensions pertain to the 2N6764 and 2N6766 types.
- 6. These dimensions pertain to the 2N6768 and 2N6770 types.
- 7. Mounting holes shall be deburred on the seating plane side.
- 8. Drain is electrically connected to the case.
- 9. In accordance with ASME Y14.5M, diameters are equivalent to φx symbology.

FIGURE 1. Physical dimensions of transistor types 2N6764 and 2N6766 TO-204AE; for types 2N6768 and 2N6770, TO-204AA - Continued.



Ltr	Incl	nes	Millin	Notes		
	Min	Max	Min	Max		
BL	.535	.545	13.59	13.84		
СН	.249	.260	6.32	6.60		
LD	.035	.045	0.89	1.14		
LL	.510	.570	12.95	14.48	3, 4	
LO	.150	BSC	3.81			
LS	.150	BSC	3.81			
MHD	.139	.149	3.53	3.78		
МНО	.665	.685	16.89	17.40		
TL	.790	.800	20.07	20.32		
TT	.040	.050	1.02	1.27		
TW	.535	.545	13.59	13.84		
Term 1						
Term 2						
Term 3	Gate					

NOTES:

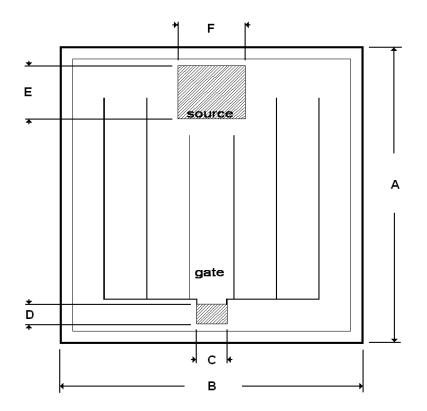
- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. Protrusion thickness of ceramic eyelets included in dimension LL.
- 4. All terminals are isolated from case.
- 5. In accordance with ASME Y14.5M, diameters are equivalent to ϕx symbology.

FIGURE 2. Physical dimensions for 2N6764T1, 2N6766T1, 2N6768T1, and 2N6770T1 (TO-254AA).

2N6768 AND 2N6770

	Dimensio	ons 2N676	64 and 2N6	6766	Dimensions 2N6768 and 2N6770			
Ltr	Inche	es	Millime	eters	Inches		Millimeters	
	Min	Max	Min	Max	Min	Max	Min	Max
А	.252	.262	6.40	6.65	.252	.262	6.40	6.65
в	.252	.262	6.40	6.65	.252	.262	6.40	6.65
с	.027	.037	0.69	0.94	.025	.035	0.64	0.89
D	.012	.022	0.30	0.56	.043	.053	1.09	1.35
Е	.057	.067	1.45	1.70	.032	.042	0.81	1.07
F	.013	.023	0.33	0.58	.015	.025	0.38	0.64

NOTES:

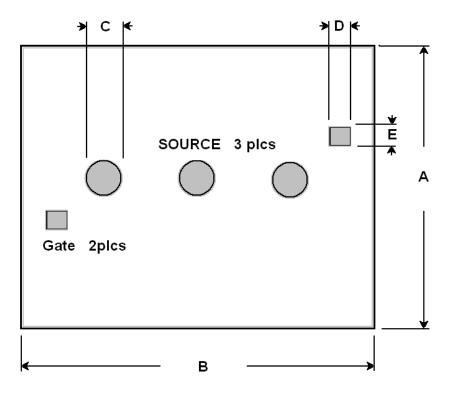

1. Dimensions are in inches.

Millimeters are given for general information only.
 Unless otherwise specified, tolerance is ± .005 inch (0.13 mm).

- 4. The physical characteristics of the die thickness are .0187 inch (0.474 mm). The back metals are chromium, nickel and silver. The top metal is aluminum and the back contact is the drain.
- 5. In accordance with ASME Y14.5M, diameters are equivalent to φx symbology.

FIGURE 3. JANHC and JANKC A-version die dimensions.

2N6764 and 2N6766


	Dimensions - 2N6764 and 2N6766						
Ltr	Inc	hes	Millim	neters			
	Min	Max	Min	Max			
А	.254	.260	6.45	6.60			
В	.254	.260	6.45	6.60			
С	.028	.033	.71	.82			
D	.017	.022	.43	.56			
E	.047	.053	1.19	1.35			
F	.059	.065	1.50	1.65			

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. Unless otherwise specified, tolerance is E_005 inch (0.13 mm).
- 4. The physical characteristics of the die are: The back metals are chromium, nickel, and silver and the back contact is the drain. The top metal is aluminum.

FIGURE 4. JANHCB and JANKCB (B-version) die dimensions for 2N6764 and 2N6766.

	Dimensions - 2N6768 and 2N6770						
Ltr	Inc	hes	Millimeters				
	Min	Max	Min	Max			
A	.247	.253	6.27	6.43			
В	.287	.293	7.29	7.44			
С	.033	.037	.84	.94			
D	.016	.020	.41	.51			
E	.017	.021	.43	.53			

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. Unless otherwise specified, tolerance is **□**±.005 inch (0.13 mm).
- 4. The physical characteristics of the die are: The back metals are chromium, nickel, and silver and the back contact is the drain. The top metal is aluminum.
- 5. Die thickness is .018 inch (0.46 mm) <u>E</u>001 inch (0.025 mm).

FIGURE 5 . JANHCB and JANKCB (B-version) die dimensions for 2N6768 and 2N6770.

2. APPLICABLE DOCUMENTS

2.1 <u>General</u>. The documents listed in this section are specified in sections 3, 4, or 5 of this specification. This section does not include documents cited in other sections of this specification or recommended for additional information or as examples. While every effort has been made to ensure the completeness of this list, document users are cautioned that they must meet all specified requirements of documents cited in sections 3, 4, or 5 of this specification, whether or not they are listed.

2.2 Government documents.

2.2.1 <u>Specifications, standards, and handbooks</u>. The following specifications, standards, and handbooks form a part of this document to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATIONS

MIL-PRF-19500 - Semiconductor Devices, General Specification for.

DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-750 - Test Methods for Semiconductor Devices.

* (Copies of these documents are available online at <u>https://assist.dla.mil/quicksearch/</u> or <u>https://assist.dla.mil</u> or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.3 <u>Order of precedence</u>. Unless otherwise noted herein or in the contract, in the event of a conflict between the text of this document and the references cited herein, the text of this document takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

3.1 General. The individual item requirements shall be as specified in MIL-PRF-19500 and as modified herein.

3.2 <u>Qualification</u>. Devices furnished under this specification shall be products that are manufactured by a manufacturer authorized by the qualifying activity for listing on the applicable qualified manufacturer's list (QML) before contract award (see 4.2 and 6.3).

* 3.3 <u>Abbreviations, symbols, and definitions</u>. Abbreviations, symbols, and definitions used herein shall be as specified in MIL-PRF-19500 and as follows:

IAS - Rated avalanche current, nonrepetitive

nC - nano Coulomb

Zthjc – Junction to case transient thermal impedance.

3.4 Interface and physical dimensions. Interface and physical dimensions shall be as specified in MIL-PRF-19500, and on figures 1, 2, 3, 4, and 5.

3.4.1 <u>Lead finish</u>. Lead finish shall be solderable in accordance with MIL-PRF-19500, MIL-STD-750, and herein. Where a choice of lead finish is desired, it shall be specified in the acquisition document (see 6.2).

3.4.2 <u>Internal construction</u>. Multiple chip construction is not permitted to meet the requirements of this specification.

3.5 Marking. Marking shall be in accordance with MIL-PRF-19500.

3.6 <u>Electrostatic discharge protection</u>. The devices covered by this specification require electrostatic protection.

3.6.1 <u>Handling</u>. MOS devices must be handled with certain precautions to avoid damage due to the accumulation of static discharge. The following handling practices are recommended (see 3.6).

a. Devices shall be handled on benches with conductive and grounded surface.

b. Ground test equipment, tools and personnel handling devices.

- c. Do not handle devices by the leads.
- d. Store devices in conductive foam or carriers.
- e. Avoid use of plastic, rubber, or silk in MOS areas.
- f. Maintain relative humidity above 50 percent if practical.
- g. Care shall be exercised during test and troubleshooting to apply not more than maximum rated voltage to any lead.
- h. Gate shall be terminated to source, R \leq 100 k\Omega, whenever bias voltage is to be applied drain to source.

3.7 <u>Electrical performance characteristics</u>. Unless otherwise specified herein, the electrical performance characteristics are as specified in 1.3, 1.4, and table I.

3.8 Electrical test requirements. The electrical test requirements shall be as specified in table I.

3.9 <u>Workmanship</u>. Semiconductor devices shall be processed in such a manner as to be uniform in quality and shall be free from other defects that will affect life, serviceability or appearance.

- 4. VERIFICATION
- 4.1 <u>Classification of inspections</u>. The inspection requirements specified herein are classified as follows:
- a. Qualification inspection (see 4.2).
- b. Screening (see 4.3).
- c. Conformance inspection (see 4.4 and table I).

4.2 <u>Qualification inspection</u>. Qualification inspection shall be in accordance with MIL-PRF-19500 and as specified herein.

4.2.1 <u>JANHC and JANKC devices</u>. Qualification for JANHC and JANKC devices shall be as specified in MIL-PRF-19500.

4.2.2 <u>Group E qualification</u>. Group E inspection shall be performed for qualification or re-qualification only. In case qualification was awarded to a prior revision of the specification sheet that did not request the performance of table II tests, the tests specified in table II herein that were not performed in the prior revision shall be performed on the first inspection lot of this revision to maintain qualification.

* 4.3 <u>Screening (JANS, JANTXV and JANTX levels only)</u>. Screening shall be in accordance with table E-IV of MIL-PRF-19500 and as specified herein. The following measurements shall be made in accordance with table I herein. Devices that exceed the limits of table I shall not be acceptable.

Screen (see table E-IV	Measur	ement
of MIL-PRF-19500) (1) (2)	JANS	JANTX and JANTXV
(3)	Gate stress test (see 4.3.2).	Gate stress test (see 4.3.2).
(3) (4)	Method 3470 of MIL-STD-750, E _{AS} test (see 4.3.3).	Method 3470 of MIL-STD-750, E _{AS} test (see 4.3.3).
(3) 3c	Method 3161 of MIL-STD-750, thermal impedance (see 4.3.4).	Method 3161 of MIL-STD-750, thermal impedance (see 4.3.4).
9	IGSSF1, IGSSR1, IDSS1.	Not applicable.
10	Method 1042 of MIL-STD-750, test condition B.	Method 1042 of MIL-STD-750, test condition B.
11	$\begin{array}{l} I_{GSSF1}, I_{GSSR1}, I_{DSS1}, r_{DS(ON)1}, V_{GS(TH)1}, of\\ subgroup 2 of table 1 herein.\\ \Delta I_{GSSF1} = +20 nA dc or \pm 100 percent of initial\\ value, whichever is greater.\\ \Delta I_{GSSR1} = -20 nA dc or \pm 100 percent of initial\\ value, whichever is greater.\\ \Delta I_{DSS1} = \pm 25 \muA dc or \pm 100 percent of initial\\ value, whichever is greater. \end{array}$	I _{GSSF1} , I _{GSSR1} , I _{DSS1} , r _{DS(ON)1} , V _{GS(TH)1} , of Subgroup 2 of table I herein.
12	Method 1042 of MIL-STD-750, test condition A.	Method 1042 of MIL-STD-750, test condition A.
13	Subgroups 2 and 3 of table I herein; $\Delta I_{GSSF1} = +20$ nA dc or ±100 percent of initial value, whichever is greater. $\Delta I_{GSSR1} = -20$ nA dc or ±100 percent of initial value, whichever is greater. $\Delta I_{DSS1} = \pm 25 \ \mu\text{A}$ dc or ±100 percent of initial value, whichever is greater. $\Delta r_{DS(ON)1} = \pm 20$ percent of initial value. $\Delta V_{GS(TH)1} = \pm 20$ percent of initial value.	Subgroup 2 of table I herein; $\Delta I_{GSSF1} = +20$ nA dc or ±100 percent of initial value, whichever is greater. $\Delta I_{GSSR1} = -20$ nA dc or ±100 percent of initial value, whichever is greater. $\Delta I_{DSS1} = \pm 25 \ \mu A \ dc \ or \pm 100 \ percent of$ initial value, whichever is greater. $\Delta r_{DS(ON)1} = \pm 20 \ percent of$ initial value. $\Delta V_{GS(TH)1} = \pm 20 \ percent of$ initial value.
17	For TO-254AA packages: Method 1081 of MIL-STD-750 (see 4.3.5), Endpoints: Subgroup 2 of table I herein.	For TO-254AA packages: Method 1081 of MIL-STD-750 (see 4.3.5), Endpoints: Subgroup 2 of table I herein.

(1) At the end of the test program, $I_{\text{GSSF1}},\,I_{\text{GSSR1}},\,\text{and}\,\,I_{\text{DSS1}}$ are measured.

(3) Shall be performed anytime after temperature cycling, screen 3a. JANTX and JANTXV levels do not need to be repeated in screening requirements.

(4) This test method in no way implies a repetitive avalanche energy rating.

⁽²⁾ An out-of-family program to characterize I_{GSSF1} , I_{GSSR1} , I_{DSS1} and $V_{GS(th)1}$ shall be invoked.

4.3.1 <u>Screening (JANHC and JANKC)</u>. Screening of JANHC and JANKC shall be in accordance with appendix G of MIL-PRF-19500. As a minimum, die shall be 100 percent probed in accordance with table I, subgroup 2 except test current shall not exceed 20 A.

4.3.2 <u>Gate stress test</u>. Apply $V_{GS} = 30$ V minimum for t = 250 µs minimum.

4.3.3 Single pulsed unclamped inductive switching.

- a. Peak currentI_{D1}.
- b. Peak gate voltage, V_{GS}.....10 V.
- c. Gate to source resistor, $R_{GS}.....25 \leq R_g \leq 200$ ohms.
- d. Initial case temperature+25°C, +10°C, -5°C.

e. Inductance, L..... $\left| \frac{2E_{AS}}{(I_{D1})^2} \right| \left[\frac{(V_{BR} - V_{DD})}{V_{BR}} \right]$ mH minimum.

f. Number of pulses to be applied1 pulse minimum.

g. Supply voltage (V_{DD}).....50 V, (25 V for devices with minimum V_{(BR)DSS} of 100 V).

4.3.4 <u>Thermal impedance</u>. The thermal impedance measurements shall be performed in accordance with method 3161 of MIL-STD-750 using the guidelines in that method for determining I_M , I_H , t_H , t_{SW} , (and V_H where appropriate). Measurement delay time (t_{MD}) = 70 µs max. See table II, group E, subgroup 4 herein.

4.3.5 Dielectric withstanding voltage.

- a. Magnitude of test voltage......900 V dc.
- b. Duration of application of test voltage......15 seconds (min).
- c. Points of application of test voltage......All leads to case (bunch connection).
- d. Method of connection......Mechanical.
- e. Kilovolt-ampere rating of high voltage source......1,200 V/1.0 mA (min).
- f. Maximum leakage current.....1.0 mA.
- g. Voltage ramp up time......500 V/second.

4.4 <u>Conformance inspection</u>. Conformance inspection shall be in accordance with MIL-PRF-19500 and as specified herein.

4.4.1 <u>Group A inspection</u>. Group A inspection shall be conducted in accordance with table E-V of MIL-PRF-19500. End-point electrical measurements shall be in accordance with table I, subgroup 2 herein.

4.4.2 <u>Group B inspection</u>. Group B inspection shall be conducted in accordance with the conditions specified for subgroup testing in table E-VIA (JANS) and table E-VIB (JAN, JANTX, and JANTXV) of MIL-PRF-19500 and as follows. End-point electrical measurements shall be in accordance with table I, subgroup 2 herein.

* 4.4.2.1 Group B inspection, table E-VIA (JANS) of MIL-PRF-19500.

	<u>Subgroup</u>	Method	Conditions
	B3	1051	Test condition G.
*	B4	1042	Test condition D; the heating cycle shall be 1 minute minimum.
	B5	1042	Test condition A; V_{DS} = rated V_{DS} (see 1.3), T_A = +175° C, t = 120 hours minimum, read and record $V_{BR(DSS)}$ (pre and post) at I_D = 1 mA, read and record I_{DSS} (pre and post), (see table I).
	B5	1042	Test condition B; V_{GS} = rated V_{GS} (see 1.3), T_A = +175° C, t = 24 hours minimum.

4.4.2.2 Group B inspection, table E-VIB (JAN, JANTX and JANTXV) of MIL-PRF-19500.

<u>Subgroup</u>	<u>Method</u>	Conditions
B2	1051	Test condition G.
B3	1042	Test condition D, 2,000 cycles. The heating cycle shall be 1 minute minimum.
B5		Not applicable.
B6		Not applicable

4.4.3 <u>Group C inspection</u>. Group C inspection shall be conducted in accordance with the conditions specified for subgroup testing in, table E-VII of MIL-PRF-19500. End-point electrical measurements shall be in accordance with table I, subgroup 2 herein.

<u>Subgroup</u>	Method	Conditions
C2	2036	Test condition A; for 2N6764, 2N6766, 2N6768, and 2N6770, weight = 10 lbs, $t = 15$ seconds; for T1 devices, weight = 9.9 pounds, $t = 10$ seconds.
C5	3161	See 4.3.4, $R_{\theta JC}$ max = 0.83° C /W.
C6	1042	Test condition D; 6,000 cycles minimum. The heating cycle shall be 1 minute minimum.

4.4.4 <u>Group E inspection</u>. Group E inspection shall be conducted in accordance with the conditions specified for subgroup testing in table E-IX of MIL-PRF-19500 and as specified in table II herein. Electrical measurements (end-points) shall be in accordance with table I, subgroup 2 herein.

4.5 Methods of inspection. Methods of inspection shall be as specified in the appropriate tables and as follows.

4.5.1 <u>Pulse measurements</u>. Conditions for pulse measurement shall be as specified in section 4 of MIL-STD-750.

TABLE I.	Group A	inspection.
----------	---------	-------------

Inspection <u>1/2</u> /	MIL-STD-750		Symbol	Limits		Unit
	Method	Conditions		Min	Max	
Subgroup 1						
Visual and mechanical inspection	2071					
Subgroup 2						
Thermal impedance <u>3</u> /	3161	See 4.3.4	$Z_{\theta JX}$			°C/W
Breakdown voltage, drain to source 2N6764 2N6766 2N6768 2N6770	3407	V_{GS} = 0; I _D = 1 mA dc, bias condition C	V _{(BR)DSS}	100 200 400 500		V dc V dc V dc V dc V dc
Gate to source voltage (threshold)	3404	$\label{eq:VDS} \begin{split} V_{DS} &\geq V_{GS}; \\ I_{D} = 0.25 \text{ mA dc} \end{split}$	V _{GS(th)1}	2.0	4.0	V dc
Gate current	3411	V_{GS} = +20 V dc, bias condition C, V_{DS} = 0	I _{GSSF1}		+100	nA dc
Gate current	3411	V_{GS} = -20 V dc, bias condition C, V_{DS} = 0	I _{GSSR1}		-100	nA dc
Drain current	3413	V_{GS} = 0; V_{DS} = 80 percent of rated V DS, bias condition C	I _{DSS1}		25	μA dc
Static drain to source on-state resistance 2N6764 2N6766 2N6768	3421	V_{GS} = 10 V dc, pulsed (see 4.5.1), condition A, I _D = rated I _{D2} (see 1.3), T _C = +25° C.	r _{DS} (on)1		0.055 0.085 0.3	Ω Ω
2N6770					0.3	Ω Ω
Static drain to source on-state resistance 2N6764	3421	V_{GS} = 10 V dc, pulsed (see 4.5.1), condition A, I _D = rated I _{D1} (see 1.3)	r _{DS} (on)2		0.065	Ω
2N6766 2N6768 2N6770					0.09 0.4 0.5	Ω Ω Ω
Forward voltage (source- drain diode) 2N6764 2N6766 2N6768 2N6770	4011	Pulsed (see 4.5.1) $V_{GS} = 0 V$, $I_D = I_{D1}$	V _{SD}		1.9 1.9 1.7 1.7	V dc V dc V dc V dc V dc

See footnotes at end of table.

TABLE I. Group A inspection - Continued.

Inspection <u>1/2</u> /		MIL-STD-750		Limits		Unit
	Method	Conditions		Min	Max	
Subgroup 3						
High temperature operation:		T _C = +125° C				
Gate current	3411	Bias condition C; V _{GS} = +20 and -20 V dc, V _{DS} = 0 V dc	I _{GSS2}		200	nA dc
Drain current	3413	Bias condition C; $V_{GS} = 0 V dc$				
		V_{DS} = 100 percent of rated V_{DS}	I _{DSS2}		1.0	mA dc
		V_{DS} = 80 percent of rated V_{DS}	I _{DSS3}		0.25	mA dc
Static drain to source on-state resistance 2N6764 2N6766 2N6768 2N6770	3421	V_{GS} = 10 V dc pulsed (see 4.5.1), I _D = rated I _{D2} (see 1.3)	r _{DS} (on)3		0.094 0.153 0.66 0.88	Ω Ω Ω Ω
Gate to source voltage (threshold)	3404	$V_{DS} \ge V_{GS};$ I _D = 0.25 mA dc	V _{GS} (th)2	1.0		V dc
Low temperature operation:		T _C = -55° C				
Gate to source voltage (threshold)	3404	$V_{DS} \ge V_{GS};$ I _D = 0.25 mA dc	V _{GS} (th)3		5.0	V dc
Subgroup 4						
Switching time test	3472	$\begin{split} I_D &= \text{rated } I_{D1} \text{ (see 1.3)}, \\ V_{GS} &= 10 \text{ V } \text{dc}, \\ \text{gate } \text{drive impedance} &= 2.35 \ \Omega, \\ V_{DD} &= 0.5 \ V_{\text{BR}(\text{DSS})} \end{split}$				
Turn-on delay time Rise time			t _{d(on)} t _r		35 190	ns ns
Turn-off delay time Fall time			t _{d(off)} t _f		170 130	ns ns
Subgroup 5						
Safe operating area test	3474	See figure 8, V_{DS} = 80 percent of rated $V_{BR(DSS)}$, t_p = 10 ms, V_{DS} = 200 V max.				
Electrical measurements		Table I, subgroup 2 herein.				

See footnotes at end of table.

Inspection <u>1/ 2</u> /	MIL-STD-750		Symbol	Limits		Unit
	Method	Conditions		Min	Max	
Subgroup 6						
Not applicable						
Subgroup 7						
Gate charge	3471	Bias condition B	Q _g (on)			
On-state gate charge 2N6764 2N6766 2N6768 2N6770					125 115 110 120	nC nC nC nC
Gate to source charge 2N6764 2N6766 2N6768 2N6770			Q _{gs}		22 22 18 19	nC nC nC nC
Gate to drain charge 2N6764 2N6766 2N6768 2N6770			Q _{gd}		65 60 65 70	nC nC nC nC
Reverse recovery time 2N6764 2N6766 2N6768 2N6770	3473	di/dt = 100 A/µs $V_{DD} \leq 30 \text{ V dc}, \text{ I}_{D} = \text{ I}_{D1}$	t _{rr}		500 950 1,200 1,600	ns ns ns ns

TABLE I. Group A inspection - Continued.

<u>1</u>/ For sampling plan, see MIL-PRF-19500.

- 2/ Unless otherwise specified, electrical characteristics for the T1 suffix devices are identical to the non T1 suffix devices.
- $\underline{3}$ / This test required for the following end-point measurements only:

Group B, subgroups 3 and 4 (JANS).

Group B, subgroups 2 and 3 (JAN, JANTX, JANTXV). Group C, subgroups 2 and 6. Group E, subgroup 1.

Inspection		MIL-STD-750	Sample	
	Method	Conditions	plan	
Subgroup 1			45 devices c = 0	
Temperature cycling	1051	Test condition G, 500 cycles		
Hermetic seal Fine leak Gross leak	1071			
Electrical measurements		See table I, subgroup 2		
Subgroup 2 1/			45 devices c = 0	
Steady-state reverse bias	1042	Condition A; 1,000 hours	C = 0	
Electrical measurements		See table I, subgroup 2		
Steady-state gate bias	1042	Condition B, 1,000 hours		
Electrical measurements		See table I, subgroup 2		
Subgroup 4			Sample size N/A	
Thermal impedance curves		See MIL-PRF-19500	IN/A	
Subgroup 5			15 devices	
Barometric pressure (reduced) 400 V and 500 V devices only	1001	Test condition C; $I_{(ISO)}$ = .25 mA (max), $V_{(ISO)}$ = V_{DS}	c = 0	

TABLE II. Group E inspection (all quality levels) for qualification or re-qualification only.

See footnotes at end of table.

Inspection	MIL-STD-750		Sample
	Method	Conditions	plan
<u>Subgroup 8</u> Repetitive avalanche energy	3469	$\begin{split} I_{AR} &= I_D; \ V_{GS} = 10 \ V; \ 2.5 \leq R_{GS} \leq 200 \ ohms; \\ T_J &= +150^\circ C + 10, \ -0 \ ^\circ C; \\ inductance &= \left[\frac{2 E_{_{AR}}}{\left(I_{_D}\right)^2}\right] \left[\frac{V_{_{BR}} - V_{_{DD}}}{V_{_{BR}}}\right] \ {}_{mHmin} \\ number \ of \ pulses \ to \ be \ applied = 3.6 \ X \ 10^8; \\ (V_{DD}) &= 50 \ V; \ time \ in \ avalanche = 2 \ \mu s \\ minimum, \ 20 \ \mu s \ maximum; \ f = 1 \ KHz \end{split}$	5 devices c = 0
Subgroup 10 Commutating diode for safe operating area test procedure for measuring dv/dt during reverse recovery of power MOSFET transistors or insulated gate bipolar transistors	3476	Test conditions shall be derived by the manufacturer.	22 devices c = 0

Group E inspection (all qualit	ity levels) for qualification re-qualification only - Continued.
Group L mspection (all qualit	ity levels) for qualification re-qualification only - Continueu.

 $\underline{1}$ A separate sample for each test shall be pulled.

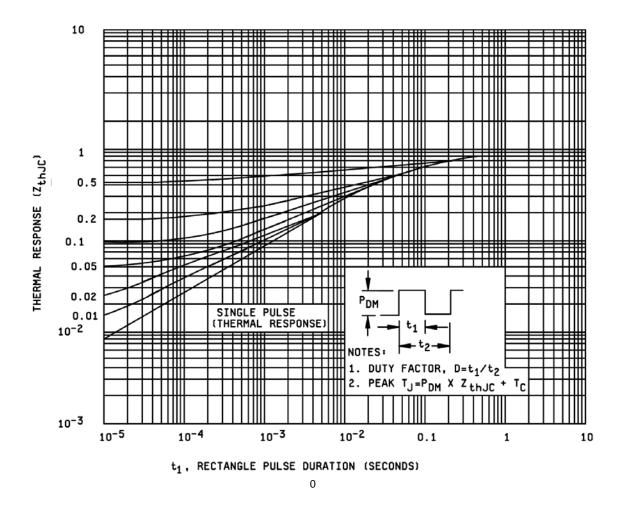


FIGURE 6. Thermal response curves.

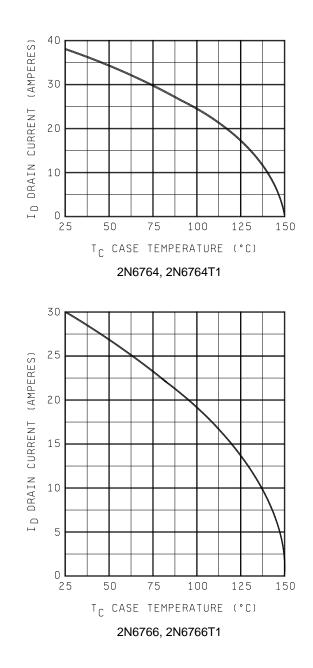


FIGURE 7. Maximum drain current versus case temperature.

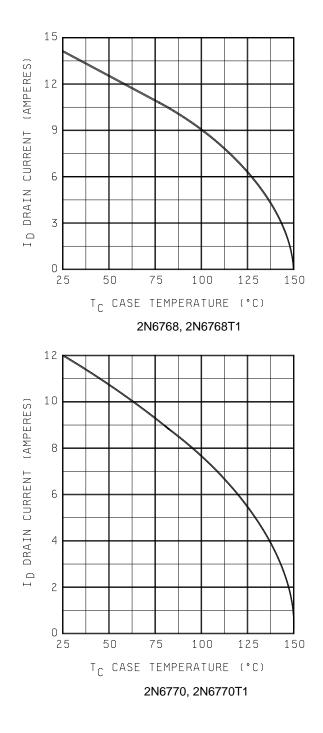
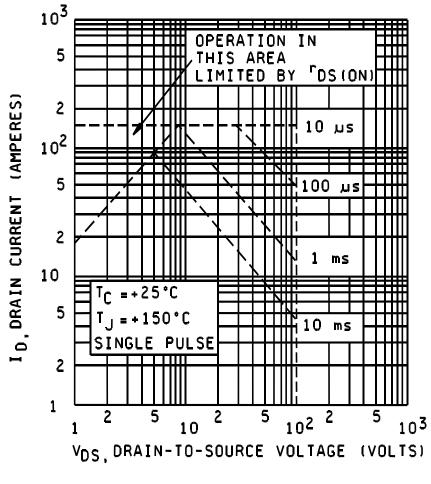
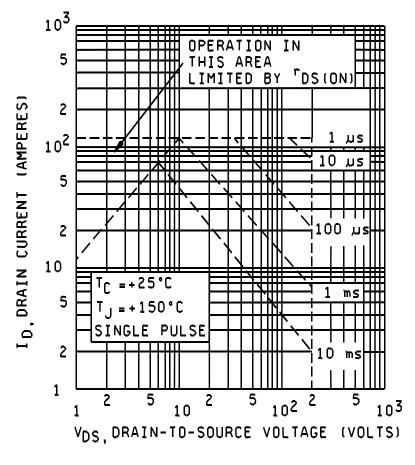




FIGURE 7. Maximum drain current versus case temperature - Continued.

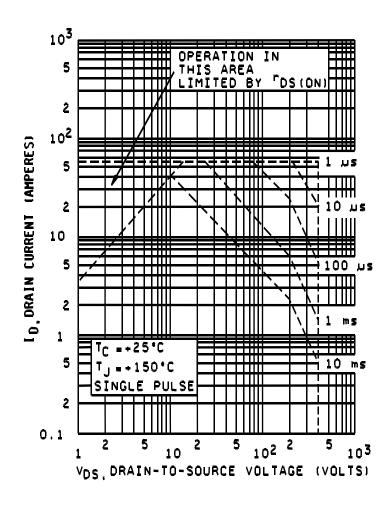

2N6764, 2N6764T1

FIGURE 8. Safe operating area graph.

2N6766, 2N6766T1

FIGURE 8. Safe operating area graph - Continued.

2N6768, 2N6768T1

FIGURE 8. Safe operating area graph - Continued.

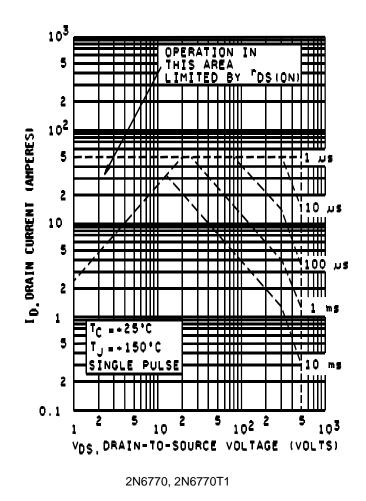


FIGURE 8. Safe operating area graph - Continued.

5. PACKAGING

5.1 Packaging. For acquisition purposes, the packaging requirements shall be as specified in the contract or order (see 6.2). When packaging of materiel is to be performed by DoD or in-house contractor personnel, these personnel need to contact the responsible packaging activity to ascertain packaging requirements. Packaging requirements are maintained by the Inventory Control Point's packaging activities within the Military Service or Defense Agency, or within the Military Service's system commands. Packaging data retrieval is available from the managing Military Department's or Defense Agency's automated packaging files, CD-ROM products, or by contacting the responsible packaging activity.

6. NOTES

(This section contains information of a general or explanatory nature that may be helpful, but is not mandatory. The notes specified in MIL-PRF-19500 are applicable to this specification.)

6.1 <u>Intended use</u>. Semiconductors conforming to this specification are intended for original equipment design applications and logistic support of existing equipment.

- 6.2 <u>Acquisition requirements</u>. Acquisition documents should specify the following:
- a. Title, number, and date of this specification.
- b. Packaging requirements (see 5.1).
- c. Lead finish (see 3.4.1).
- d. Product assurance level and type designator.
- e. For die acquisition, the JANHC or JANKC letter version shall be specified (see figures 3, 4 and 5).
- f. Type designation and quality assurance level.

* 6.3 <u>Qualification</u>. With respect to products requiring qualification, awards will be made only for products which are, at the time of award of contract, qualified for inclusion in Qualified Manufacturers List (QML 19500) whether or not such products have actually been so listed by that date. The attention of the contractors is called to these requirements, and manufacturers are urged to arrange to have the products that they propose to offer to the Federal Government tested for qualification in order that they may be eligible to be awarded contracts or orders for the products covered by this specification. Information pertaining to qualification of products may be obtained from DLA Land and Maritime, ATTN: VQE, P.O. Box 3990, Columbus, OH 43218-3990 or e-mail <u>vqe.chief@dla.mil</u>. An online listing of products qualified to this specification may be found in the Qualified Products Database (QPD) at <u>https://assist.dla.mil</u>.

6.4 <u>Substitution information</u>. Devices covered by this specification are substitutable for the manufacturer's and user's PIN. This information in no way implies that manufacturer's PINs are suitable as a substitute for the military Part or Identifying Number (PIN).

PIN	Manufacturer's CAGE code	Manufacturer's and user's PIN
2N6764 2N6766 2N6768 2N6770	59993, 43611 59993, 43611 59993, 43611 59993, 43611 59993, 43611	IRF150, IRF151, IRF152, IRF153 IRF250, IRF251, IRF252, IRF253 IRF350, IRF351, IRF352, IRF353 IRF450, IRF451, IRF452, IRF453

6.5 <u>Suppliers of JANC die</u> . The qualified JANC suppliers with the applicable letter version (example
JANHCA2N6764) will be identified on the QML.

JANC ordering information					
PIN	Manufacturer				
	59993	43611			
2N6764	JANHCA2N6764 JANTXHCA2N6764 JANTXVHCA2N6764 JANSHCA2N6764	JANHCB2N6764 JANKCB2N6764			
2N6766	JANHCA2N6766 JANTXHCA2N6766 JANTXVHCA2N6766 JANSHCA2N6766	JANHCB2N6766 JANKCB2N6766			
2N6768	JANHCA2N6768 JANTXHCA2N6768 JANTXVHCA2N6768 JANSHCA2N6768	JANHCB2N6768 JANKCB2N6768			
2N6770	JANHCA2N6770 JANTXHCA2N6770 JANTXVHCA2N6770 JANSHCA2N6770	JANHCB2N6770 JANKCB2N6770			

6.6 <u>Changes from previous issue</u>. The margins of this specification are marked with asterisks to indicate where changes from the previous issue were made. This was done as a convenience only and the Government assumes no liability whatsoever for any inaccuracies in these notations. Bidders and contractors are cautioned to evaluate the requirements of this document based on the entire content irrespective of the marginal notations and relationship to the last previous issue.

Custodians: Army - CR Navy - EC Air Force - 85 NASA - NA DLA - CC

Review activities: Army - AR, MI Air Force - 19, 70, 99 Preparing activity: DLA - CC

(Project 5961-2013-003)

* NOTE: The activities listed above were interested in this document as of the date of this document. Since organizations and responsibilities can change, you should verify the currency of the information above using the ASSIST Online database at <u>https://assist.dla.mil</u>.