

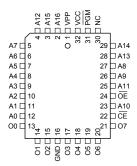
Features

- · Fast Read Access Time 45 ns
- Low-Power CMOS Operation
 - 100 µA max. Standby
 - 25 mA max. Active at 5 MHz (FT27C010L)
 - 35 mA max. Active at 5 MHz (FT27C010)
- JEDEC Standard Packages
 - 32-Lead CDIL/LCC/JLCC +Custom Ceramic packages
- 5V \pm 10% Supply
- High Reliability CMOS Technology
 - 2000V ESD Protection
 - 200 mA Latchup Immunity
- Programming Algorithm 100 µs/byte (typical)
- CMOS and TTL Compatible Inputs and Outputs
- Integrated Product Identification Code
- Commercial, Industrial and Automotive Temperature Ranges. MILITARY-Contact sales

Description

The FT27C010(L) is a low-power, high-performance 1,048,576-bit UV erase/programmable read only memory (UVEPROM) organised as 128K by 8 bits. They require only one 5V power supply in normal read mode operation. Any byte can be accessed in less than 45 ns, eliminating the need for speed reducing WAIT states on high-performance microprocessor systems.

Two power versions are offered. In read mode, the FT27C010 typically consumes 25 mA while the FT27C010L requires only 8 mA. Standby mode supply current for both parts is typically less than 10 μ A.


Pin Configurations

Pin Name	Function				
A0 - A16	Addresses				
O0 - O7	Outputs				
CE	Chip Enable				
ŌĒ	Output Enable				
PGM	Program Strobe				
NC	No Connect				

CDIL Top View

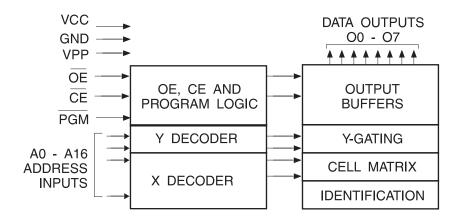
	_	\ \ \		1
VPP [1	_	32	vcc
A16 □	2		31	PGM
A15 □	3		30	□NC
A12 □	4		29	□ A14
A7 □	5		28	□ A13
A6 □	6		27	□ A8
A5 □	7		26	□ A9
A4 □	8		25	□ A11
A3 □	9		24	□ Œ
A2 □	10		23	□ A10
A1 □	11		22	CE
A0 □	12		21	07
00 □	13		20	06
01 □	14		19	05
02 □	15		18	04
GND □	16		17	□ 03

CLCC/JLCC Top View

1-Megabit (128K x 8) UVEPROM

FT27C010(L)

The FT27C010(L) in available in a industry standard JEDEC-approved programmable (UVerasable) Ceramic DII, LCC, packages. All devices feature two line control ($\overline{\text{CE}}$, $\overline{\text{OE}}$) to give designers the flexibility to prevent bus contention.


With 128K byte storage capability, the FT27C010(L) allows firmware to be stored reliably and to be accessed by the system without the delays of mass storage media.

Force FT27C010(L) have additional features to ensure high quality and efficient production use. The Programming Algorithm reduces the time required to program the part and guarantees reliable programming. Programming time is typically only 100 µs/byte. The Integrated Product Identification Code electronically identifies the device and manufacturer. This feature is used by industry standard programming equipment to select the proper programming algorithms and voltages.

System Considerations

Switching between active and standby conditions via the Chip Enable pin may produce transient voltage excursions. Unless accommodated by the system design, these transients may exceed data sheet limits, resulting in device non-conformance. At a minimum, a 0.1 μF high frequency, low inherent inductance, ceramic capacitor should be utilised for each device. This capacitor should be connected between the V $_{\text{CC}}$ and Ground terminals of the device, as close to the device as possible. Additionally, to stabilise the supply voltage level on printed circuit boards with large EPROM arrays, a 4.7 μF bulk electrolytic capacitor should be utilised, again connected between the V $_{\text{CC}}$ and Ground terminals. This capacitor should be positioned as close as possible to the point where the power supply is connected to the array.

Block Diagram

Absolute Maximum Ratings*

Temperature Under Bias55°C to +125°C
Storage Temperature65°C to +150°C
Voltage on Any Pin with Respect to Ground2.0V to +7.0V ⁽¹⁾
Voltage on A9 with Respect to Ground2.0V to +14.0V ⁽¹⁾
V _{PP} Supply Voltage with Respect to Ground2.0V to +14.0V ⁽¹⁾

*NOTICE:

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note:

Minimum voltage is -0.6V dc which may undershoot to -2.0V for pulses of less than 20 ns. Maximum output pin voltage is $V_{\rm CC}$ + 0.75V dc which may overshoot to +7.0 volts for pulses of less than 20 ns.

Operating Modes

Mode\Pin	CE	ŌĒ	PGM	Ai	V _{PP}	Outputs	
Read	V _{IL}	V _{IL}	X ⁽¹⁾	Ai	Х	D _{OUT}	
Output Disable	Х	V _{IH}	Х	X	Х	High	Z
Standby	V _{IH}	Х	Х	X	Х	High	Z
Rapid Program ⁽²⁾	V _{IL}	V _{IH}	V _{IL}	Ai	V _{PP}	D _{IN}	
PGM Verify	V _{IL}	V _{IL}	V _{IH}	Ai	V_{PP}	D _{OUT}	
PGM Inhibit	V _{IH}	Х	Х	X	V _{PP}	High Z	
Product Identification ⁽⁴⁾	V _{IL}	V _{IL}	х	$A9 = V_H^{(3)}$ $A0 = V_{IH} \text{ or } V_{IL}$ $A1 - A16 = V_{IL}$	X	Identification Code	

- Notes: 1. X can be V_{IL} or V_{IH}.
 - 2. Refer to Programming Characteristics
 - 3. $V_H = 12.0 \pm 0.5 V$.
 - 4. Two identifier bytes may be selected. All Ai inputs are held low (V_{IL}) , except A9 which is set to V_H and A0 which is toggled low (V_{IL}) to select the Manufacturer's Identification byte and high (V_{IH}) to select the Device Code byte.

Rev 1

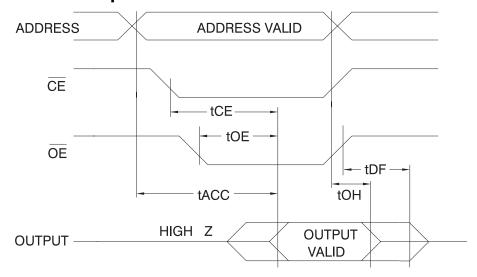
DC and AC Operating Conditions for Read Operation

		FT27C010/FT27C010L							
		-45	-55	-70	-90	-12	-15		
	Com.	0°C - 70°C	0°C - 70°C	0°C - 70°C	0°C - 70°C	0°C - 70°C	0°C - 70°C		
Operating Temp. (Case)	Ind.	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C		
Tomp: (Gago)	Auto.				-40°C - 125°C	-40°C - 125°C	-40°C - 125°C		
V _{CC} Power Supply		5V ± 10%	5V ± 10%	5V ± 10%	5V ± 10%	5V ± 10%	5V ± 10%		

DC and Operating Characteristics for Read Operation

Symbol	Parameter	Condition		Min	Max	Units
	least lead Owner)/ 0)/4-)/	Com., Ind.		± 1	μΑ
ILI	Input Load Current	$V_{IN} = 0V \text{ to } V_{CC}$	Auto.		± 5	μA
	Outrot Lealing Comment)/ = 0\/ to \/	Com., Ind.		± 5	μA
I _{LO} Output Leak	Output Leakage Current	$V_{OUT} = 0V \text{ to } V_{CC}$	Auto.		±10	μA
IPP1 ⁽²⁾	V _{PP} ⁽¹⁾⁾ Read/Standby Current	$V_{PP} = V_{CC}$			10	μA
	V (1) Other allow Operation	I_{SB1} (CMOS), $\overline{CE} = V_{CC} \pm 0.3V$		100	μA	
I _{SB}	V _{CC} ⁽¹⁾ Standby Current	I_{SB2} (TTL), \overline{CE} = 2.0 to V_{CC} + 0		1	mA	
	V Astina Command	f = 5 MHz, I _{OUT} = 0 mA,	AT27C010(L)		25	mA
I _{CC}	V _{CC} Active Current	CE = V _{IL}	AT27C010		35	mA
V _{IL}	Input Low Voltage			-0.6	0.8	V
V _{IH}	Input High Voltage			2.0	V _{CC} + 0.5	V
V _{OL}	Output Low Voltage	I _{OL} = 2.1 mA			0.4	V
V _{OH}	Output High Voltage	I _{OH} = -400 μA	2.4		V	

Notes: 1. V_{CC} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP} .

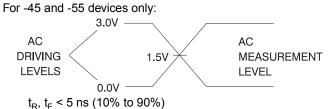

AC Characteristics for Read Operation

			FT27C010/FT27C010L												
				45		55	-7	70	-6	90		12	-	15	
Symbol	Parameter	Condition	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Units
t _{ACC} ⁽³⁾	Address to Output Delay	CE = OE = V _{IL}		45		55		70		90		120		150	ns
t _{CE} ⁽²⁾	CE to Output Delay	OE = V _{IL}		45		55		70		90		120		150	ns
t _{OE} ⁽²⁾⁽³⁾	OE to Output Delay	CE = V _{IL}		20		25		30		35		35		40	ns
t _{DF} ⁽⁴⁾⁽⁵⁾	OE or CE High to Output Float, whichever occurred first			20		20		25		25		30		35	ns
t _{OH}	Output Hold from Address, Coccurred first	E or OE, whichever	7		7		7		0		0		0		ns

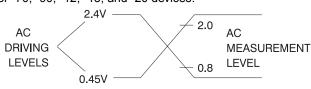
Notes: 2,3,4,5. - see AC Waveforms for Read Operation.

^{2.} V_{PP} may be connected directly to V_{CC} , except during programming. The supply current would then be the sum of I_{CC} and I_{PP} .

AC Waveforms for Read Operation⁽¹⁾

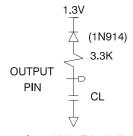


Notes:


- 1. Timing measurement reference level is 1.5V for -45 and -55 devices. Input AC drive levels are V_{IL} = 0.0V and V_{IH} = 3.0V. Timing measurement reference levels for all other speed grades are V_{OL} = 0.8V and V_{OH} = 2.0V. Input AC drive levels are V_{IL} = 0.45V and V_{IH} = 2.4V.
- 2. $\overline{\text{OE}}$ may be delayed up to t_{CE} t_{OE} after the falling edge of $\overline{\text{CE}}$ without impact on t_{CE} .
- 3. $\overline{\text{OE}}$ may be delayed up to t_{ACC} t_{OE} after the address is valid without impact on t_{ACC} .
- 4. This parameter is only sampled and is not 100% tested.
- 5. Output float is defined as the point when data is no longer driven.

Input Test Waveforms and Measurement Levels

nent Leveis



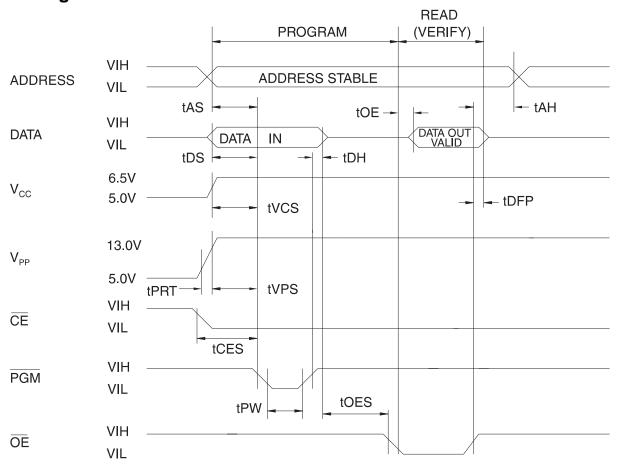
For -70, -90, -12, -15, and -20 devices:

 t_R , t_F < 20 ns (10% to 90%)

Output Test Load

Note:

 $\rm C_L$ = 100 pF including jig capacitance, except for the -45 and -55 devices, where $\rm C_L$ = 30 pF.


Pin Capacitance

 $f = 1 \text{ MHz}, T = 25^{\circ}C^{(1)}$

Symbol	Тур	Max	Units	Conditions
C _{IN}	4	8	pF	V _{IN} = 0V
C _{OUT}	8	12	pF	V _{OUT} = 0V

Note: 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested.

Programming Waveforms⁽¹⁾

Notes: 1. The Input Timing Reference is 0.8V for $V_{\rm IL}$ and 2.0V for $V_{\rm IH}$.

- 2. t_{OE} and t_{DEP} are characteristics of the device but must be accommodated by the programmer.
- When programming the FT27C010(L) at 0.1 μF capacitor is required across V_{PP} and ground to suppress spurious voltage transients.

DC Programming Characteristics

 T_A = 25 ± 5°C, V_{CC} = 6.5 ± 0.25V, V_{PP} = 13.0 ± 0.25V

			Limits		
Symbol	Parameter	Test Conditions	Min	Max	Units
I _{LI}	Input Load Current	$V_{IN} = V_{IL}, V_{IH}$		±10	μΑ
V _{IL}	Input Low Level		-0.6	0.8	V
V _{IH}	Input High Level		2.0	V _{CC} + 1	V
V _{OL}	Output Low Voltage	I _{OL} = 2.1 mA		0.4	V
V _{OH}	Output High Voltage	I _{OH} = -400 μA	2.4		V
I _{CC2}	V _{CC} Supply Current (Program and Verify)			40	mA
I _{PP2}	V _{PP} Supply Current	CE = PGM = V _{IL}		20	mA
V _{ID}	A9 Product Identification Voltage		11.5	12.5	V

AC Programming Characteristics

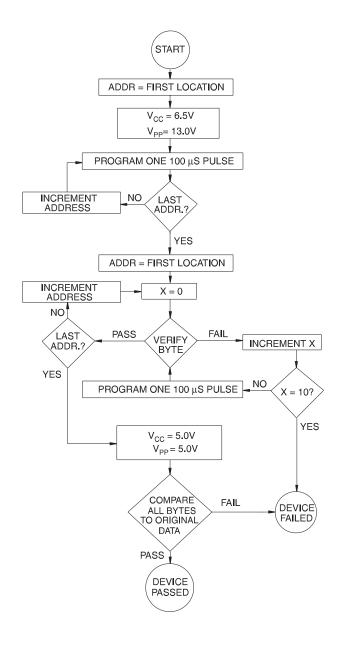
 $\rm T_A$ = 25 \pm 5°C, $\rm V_{CC}$ = 6.5 \pm 0.25 V, $\rm V_{PP}$ = 13.0 \pm 0.25V

			Li	mits		
Symbol	Parameter	Test Conditions ⁽¹⁾	Min	Max	Units	
t _{AS}	Address Setup Time		2		μs	
t _{CES}	CE Setup Time		2		μs	
t _{OES}	OE Setup Time	Input Rise and Fall Times	2		μs	
t _{DS}	Data Setup Time	(10% to 90%) 20ns	2		μs	
t _{AH}	Address Hold Time	Input Pulse Levels	0		μs	
t _{DH}	Data Hold Time	0.45V to 2.4V	2		μs	
t _{DFP}	OE High to Output Float Delay ⁽²⁾		0	130	ns	
t _{VPS}	V _{PP} Setup Time	Input Timing Reference Level 0.8V to 2.0V	2		μs	
t _{VCS}	V _{CC} Setup Time	0.07 to 2.07	2		μs	
t _{PW}	PGM Program Pulse Width ⁽³⁾	Output Timing Reference Level	95	105	μs	
t _{OE}	Data Valid from OE	0.8V to 2.0V		150	ns	
t _{PRT}	V _{PP} Pulse Rise TIme During Programming		50		ns	

Notes: 1. V_{CC} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP} .

Force 27C010(L) uses Integrated Product Identification Code

		Pins						Hex		
Codes	A0	07	O6	О5	04	О3	O2	01	00	Data
Manufacturer	0	0	0	0	1	1	1	1	0	1E
Device ype T	1	0	0	0	0	0	1	0	1	05


^{2.} This parameter is only sampled and is not 100% tested. Output Float is defined as the point where data is no longer driven—see timing diagram.

^{3.} Program Pulse width tolerance is 100 μ sec \pm 5%.

Rapid Programming Algorithm

A 100 μ s \overline{PGM} pulse width is used to program. The address is set to the first location. V_{CC} is raised to 6.5V and V_{PP} is raised to 13.0V. Each address is first programmed with one 100 μ s \overline{PGM} pulse without verification. Then a verification / reprogramming loop is executed for each address. In the event a byte fails to pass verification, up to 10 successive 100 μ s pulses are applied with a verification

after each pulse. If the byte fails to verify after 10 pulses have been applied, the part is considered failed. After the byte verifies properly, the next address is selected until all have been checked. V_{PP} is then lowered to 5.0V and V_{CC} to 5.0V. All bytes are read again and compared with the original data to determine if the device passes or fails.

FT27C010 Ordering Information

	las	(mA)			
t _{ACC}					
(ns)	Active	Standby	Ordering Code	Package	Operation Range
45	35	0.1			Commercial
			FT27C010-45DC	CDIL	(0°C to 70°C)
			FT27C010-45LC	LCC	
	35	0.1			Industrial
			FT27C010-45DI	CDIL	(-40°C to 85°C)
			FT27C010-45LI	LCC	
55	35	0.1			Commercial
			FT27C010-55DC	CDIL	(0°C to 70°C)
			FT27C010-55LC	LCC	
	35	0.1			Industrial
			FT27C010-55DI	CDIL	(-40°C to 85°C)
			FT27C010-55LI	LCC	
70	35	0.1			Commercial
			FT27C010-70DC	CDIL	(0°C to 70°C)
			FT27C010-70LC	LCC	
	35	0.1			Industrial
			FT27C010-70DI	CDIL	(-40°C to 85°C)
			FT27C010-70LI	LCC	

(continued)

Package Type				
LCC	32-pad, Windowed Leadless Chip Carrier (LCC)			
CDIL	32-Lead, 0.600" Wide, Ceramic Windowed Dual Inline Package (CDIL)			

FT27C010 Ordering Information (Continued)

t _{ACC} (ns)	I _{CC} (mA)				
	Active	Standby	Ordering Code	Package	Operation Range
90	35	0.1			Commercial
			FT27C010-90DC	CDIL	(0°C to 70°C)
			FT27C010-90LC	LCC	
	35	0.1			Industrial
			FT27C010-90DI	CDIL	(-40°C to 85°C)
			FT27C010-90LI	LCC	
	35	0.1	FT27C010-90DA		Automotive
			FT27C010-90LA/KA	CDIL/LCC/JLCC	(-40°C to 125°C)
120	35	0.1			Commercial
			FT27C010-12DC	CDIL	(0°C to 70°C)
			FT27C010-12LC	LCC	
	35	0.1			Industrial
			FT27C010-12DI		(-40°C to 85°C)
			FT27C010-12LI	LCC	
	35	0.1	FT27C010-12DA	CDIL	Automotive
			FT27C010-12LA	LCC	(-40°C to 125°C)
150	35	0.1			Commercial
			FT27C010-15DC	CDIL	(0°C to 70°C)
			FT27C010-15LC	LCC	
	35	0.1			Industrial
			FT27C010-15DI	CDIL	(-40°C to 85°C)
			FT27C010-15LI	LCC	
	35	0.1	FT27C010-15JA	CDIL	Automotive
			FT27C010-15LA/KA	LCC/JLCC	(-40°C to 125°C)

Package Type		
LCC	32-pad, Windowed Leadless Chip Carrier (LCC)	
CDIL	32-Lead, 0.600" Wide, Ceramic Dual Inline Package (CDIL)	
JLCC	32-Lead, Windowed J Leaded Chip Carrier (JLCC)	

FT27C010(L) -

www.forcetechnologies.co.uk

Ashley Crt, Henley, Marlborough, Wilts, UK. SN8 3RH

Tel: +44(0)1264 731200 Fax:+44(0)1264 731444

E-mail

sales@forcetechnologies.co.uk

Life Support Applications

Force Technologies products are not designed for use in life support appliances, devices or systems where malfunction of a Force Technologies product can reasonably be expected to result in a personal injury. Force Technologies customers using or selling Force Technologies products for use in such applications do so at their own risk and agree to fully indemnify Force Technologies for any damages resulting from such improper use or sale.

Copyright Force Technologies Ltd 2010