

Operational Amplifiers

High bandwidth, High Slew Rate, Uncompensated, High Input Impedance, Operational Amplifiers

Operational amplifiers FT2520 delivering an unsurpassed combination of specifications for slew rate, bandwidth and settling time. These amplifiers are controlled at close loop gains greater than 3 without external compensation. In addition, these high performance components also provide low offset current and high input impedance.

100V/µs slew rate and 200ns (0.1%) settling time of these amplifiers make them ideal components for pulse amplification and data acquisition designs. These devices are valuable components for RF and video circuitry requiring up to 20 MHz gain bandwidth and 2 MHz power bandwidth. For accurate signal conditioning designs the FT2520's superior dynamic specifications are complemented by 25nA offset current, $50 M\Omega$ input impedance and off set trim capability.

These amplifiers have been developed and certified as HiRel and high RadHard components for air space and defence equipment.

Features

•	High slew rate	100 V/µs
•	Fast Settling	500 ns
•	Full Power Bandwidth	2 MHz
•	Gain Bandwidth	20 MHz
•	High Input Impedance	50 MΩ
•	Low Offset Current	25 nA
•	High RadHard	10 ⁵ rad
•	Compensation Pin for Unity Gain	Capability
•	Balance pins	

Applications

RoHS Compliant

- Data Acquisition Systems
- RF Amplifiers
- Video Amplifiers
- Signal Generators
- Pulse Amplification

Pinout

8-lead metal can Top View

Ordering information

Part	Mark.	Temp., °C	Package	Package drawing
FT2520SH5U	2520	CO +0	8-lead	
FT2522SH5U	2522	-60 to +125	metal	SH-8
11232231130	2322	1123	can	

Notes:

- These Pb-free hermetic packaged products employ 100% Au plate, which is RoHS.
- 2. Military Screening available on request

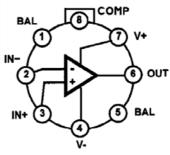


Figure 1. Package pinout

Absolute Maximum Ratings

- 2. While of the same time of above mentioned supply voltage and output current not more 1 h
- 3. Common mode Input Voltage is determined in accordance with fig.11

Electrical Specifications

 $V_{SUPPLY} = \pm 15 V \pm 10 \%$

Operation Condition

Temperature range -60 °C to +125 °C Operating Supply Voltage \pm 15 V \pm 10 % $R_{I} \ge 2 \text{ k}\Omega$

Thermal Information

Thermal Resistance (typical) $\theta_{JA} = 170 \, ^{\circ}\text{C/W} \, (\text{note 4})$ $\theta_{JC} = 85 \, ^{\circ}\text{C/W} \, (\text{note 5})$ Maximum junction temperature +170 $^{\circ}\text{C}$ Lead temperature (soldering 3 s) 350 $^{\circ}\text{C}$ *Notes:*

- 4. θ_{JA} is measured with component on an evaluation PC board in free air
- 5. For θ_{JC} "case temp" location is the center of metal can

			FT2520SH	1511	b F	T2522SH5	U	
Parameter	Temp., °C	Min (note 6)	Тур	Max (note 6)	Min (note 6)	Тур	Max (note 6)	Units
Input Characteristics							_	
Offset Voltage	25	74-7	4.0	9	-	4.0	9	
Offset Voltage (note 8)	+125		5.3	12	-	5.3	12	mV
(note 8)	-60	- //	5.3	12	-	5.3	12	
Offset Voltage Drift (note 8)	-60 to 25	-	13	30	-	13	50	μV/°C
Offset Voltage Drift (flote 8)	25 to +125	- /	13	30	-	13	30	μν/ C
	25	/- 4	100	225	-	125	300	00 nA
Average bias current (note 8)	+125	-/	175	450	-	270	600	
	-60		175	450	-	270	600	
Offset Current	25	-	14	30	-	22	50	00 nA
	+125	-	24	60	-	45	100	
(note 8)	-60	-	24	60	-	45	100	
Officet Commant Drift (note 9)	-60 to 25		225	500	-	- 225 1000 A /s	~ \ /°C	
Offset Current Drift (note 8)	25 to +125		225	500	-	225	500	pA/°C
Navinous Common Nada	m Common Mode (note 9)	-						
		-	-	V				
Voltage (Hote 9)		-	-					
Minimum Common Mada	2510		-	-10				
Minimum Common Mode	+125	-	-	-10	-	-	-10	V
Voltage (note 9)	-60	-	-	-10	-	-	-10	
Input Resistance (note 7)	25	-	50	-	-	50	-	ΜΩ

		F	T2520SH	5U	F	T2522SH5	<u> </u>	
Parameter	Temp., °C	Min (note 6)	Тур	Max (note 6)	Min (note 6)	Тур	Max (note 6)	Units
Transfer characteristics								
Large Signal Voltage Gain	25	8	11.8	- /	7.5	10	1	
(note 9, 14)	+125	7	9.1	- /	5.5	7.1	ı	kV/V
(Hote 9, 14)	-60	7	9.1	-//	5.5	7.1	100	
Common Mode Rejection	25	82	88	/-	82	88	10	///
Ratio (note 8)	+125	80	88	-	80	88	V/	dB
Ratio (note 8)	-60	80	88	-	80	88	/ -	
Gain Bandwidth (note 7, 15)	25	10	20		10	20	/ /	MHz
Minimum Stable Gain	25	3	- /	-	3	-	/	V/V
Output Characteristics				/				
Marian and Order to Maltage	25	9.5	12	- //	9.5	12	-	V
Maximum Output Voltage	+125	9	10.5	- //	9.0	10.5	-	
(note 9)	-60	9	10.5	-/	9.0	10.5	-	
Naisier ver Outrout Valtage	25	-	-12	-9.5	-/-	-12	-9.5	
Minimum Output Voltage	+125	- //	-10.5	-9	- 1	-10.5	-9	V
(note 9)	-60	-/	-10.5	-9	-	-10.5	-9	
Output Current (note 13)	25	10	12.5	- /	10	12.4	-	mA
Full Power Bandwidth (note 13, 16)	25	1.5	2.0	-)	1.5	2.0	-	MHz
Transient Response				1.1	1			•
Rise Time (note 9, 10, 11, 17)	25)/-	25	50	- J	25	50	ns
Overshoot (note 9, 10, 17)	25		10	25	-	10	25	%
Slew rate (note 9, 10, 12, 19)	25	80	100	ANDROVE	70	100	-	V/µs
Settling Time (note 8, 18)	25	- /	200	-	-	200	-	ns
Power Supply Characteristics			7	7				
	25	-/	6.0	7.0	-	6.0	7.0	mA
Supply Current	+125	-/-/	6.5	7.5	-/	6.5	7.5	
	-60		6.5	7.5	/-	6.5	7.5	
Davier Comple Dail ation Davi	25	80	90	-	74	90	-	
Power Supply Rejection Ratio	+125	80	90	-	74	90	-	dB
(note 11)	-60	80	90	_	74	90	-	

Notes:

- Parameters with Max and Min limits are 100 % tested.
- 7. Parameter is controlled via design or process parameters and is not directly tested at final production. This parameter is lab characterised upon initial design release, or upon design changes. This parameter is guaranteed by characterisation based upon data from multiple production runs which reflect lot to lot and within lot variation.
- 8. $R_L = 10 k$.
- 9. $R_L = 2 k$.
- 10. C_L = 50 pF

- 11. VOUT = ±200 mV
- 12. VOUT = ±5 V
- 13. VOUT = ±10 V
- 14. VCM = ±10 V
- 15. Ay=≥10
- 16. Full Power Bandwidth guaranteed based on slew rate measurement using

FPBW = Slew Rate/ 2π VOUT MAX

- 17. See figure 3 and 4
- 18. See figure 2 and 5
- 19. See figure 2 and 4

Test Circuits and Waveforms

Test Circuits and Waveforms

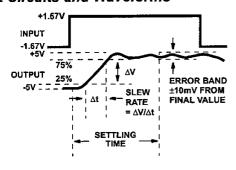


Figure 2. Slew rate and settling time

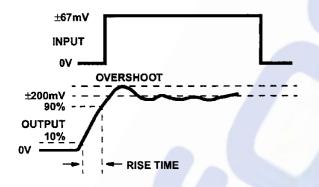


Figure 3.Transient response

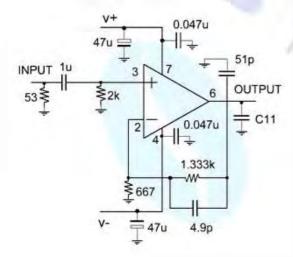


Figure 4. Slew rate and trensient response test circuit

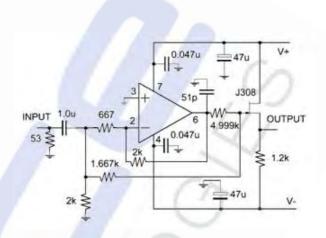


Figure 5. Settling time test circuit

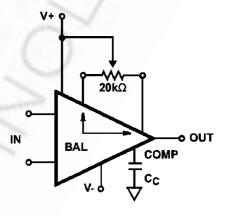


Figure 6. Suggested offset voltage adjustment and compensation hook-up

Schematic Diagram

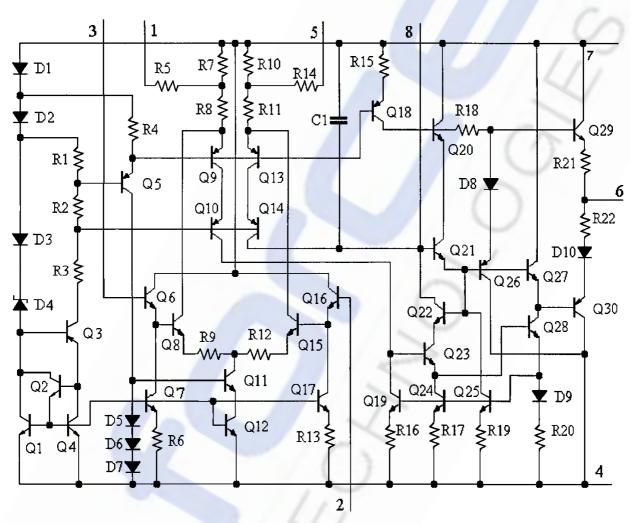


Figure 7. FT2520, FT2522 schematic diagram

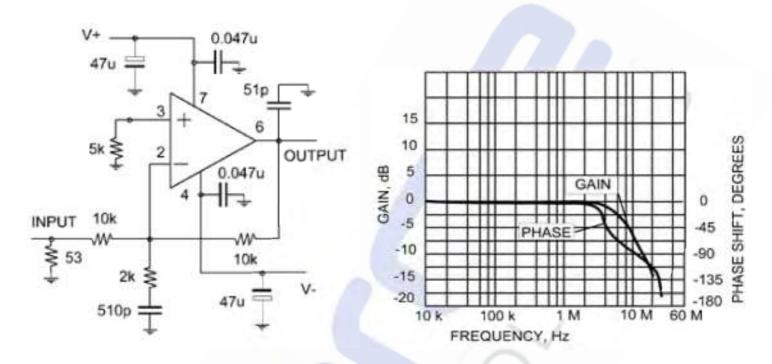


Figure 8.Inverting unity gain circuit

Figure 8 shows a Compensation Circuit for an inverting unity gain amplifier. The circuit was tested for functionality with supply voltages from ±5V to ±15V, and the performance as tested was: Slew Rate 100V/µs; Bandwidth 7MHz; and Settling Time (0.1%) 500ns. Figure 9 illustrates the amplifier's frequency response, and it is important to note that capacitance at pin 8 must be minimised for maximum bandwidth.

Figure 9. Frequency response for inverting unity gain circuit

Typical Performance Curve

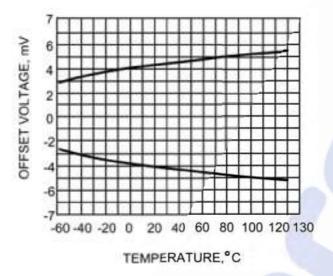


Figure 10. Offset voltage vs temperature

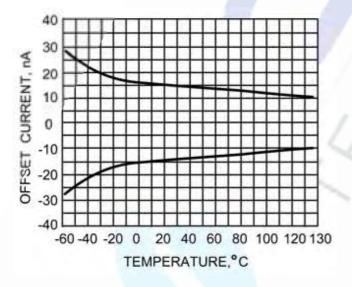


Figure 12. Offset current vs temperature

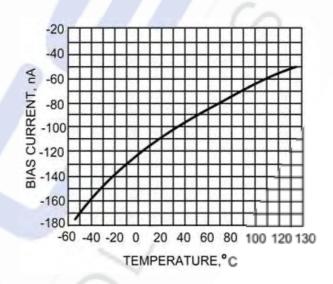


Figure 11. Bias current vs temperature

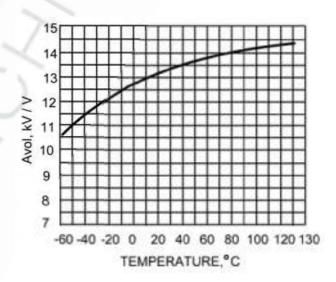
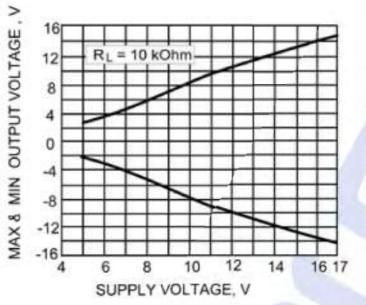
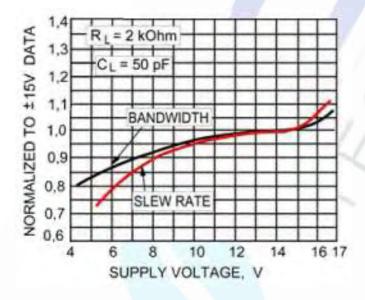



Figure 13. Open loop gain vs temperature


FT2520SH5U, FT2520SH5U

6,5 6,0 SUPPLY CURRENT, mA 5,5 5,0 4,5 +125 4.0 3,5 60 °C 3.0 2,5 12 8 10 4 14 16 17 SUPPLY VOLTAGE, ± V

Figure 14. Maximum and minimum output voltage vs supply voltage

Figure 15. Supply current vs supply voltage

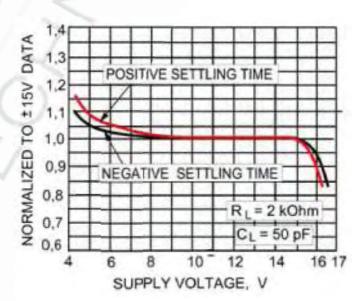


Figure 16. Normalised settling time vs supply voltage

Figure 17. . Normalised slew rate and bandwidth vs supply voltage

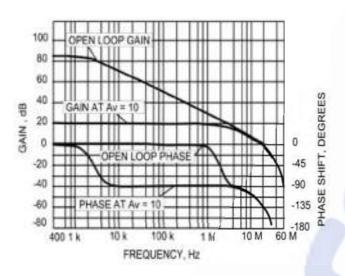


Figure 18. Frequency response

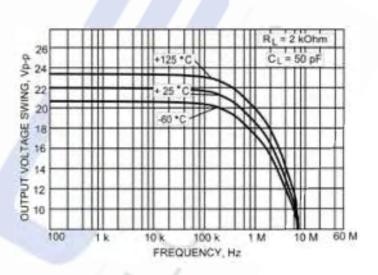


Figure 19. Output voltage swing vs frequency

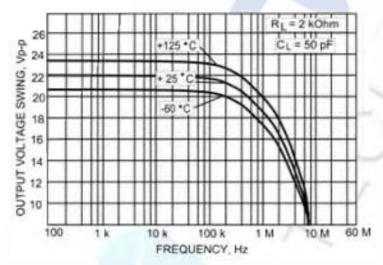


Figure 20. Open loop frequency response for various capacitor values on the comp pin

Die Characteristics

Die dimensions:

1.8x1.7± 0.1 mm,

 $71x67 \pm 4$ mils.

Wafer thickness 0.46± 0.02 mm,

18 ± 1 mils.

Metallisation:

type: Al, 1% Si,thickness: $1.4 \pm 0.1 \, \mu m$

Glassivation:

type: Phosphosilicate glass (PSG)

PSG thickness 1.2 ±0.2µm.

Worst case current density:

 8.10^4 A/cm².

Substrate potential(Powered Up):

Unbiased.

Transistor count:

30.

Process:

Bipolar epitaxial.

Metallisation Mask layout

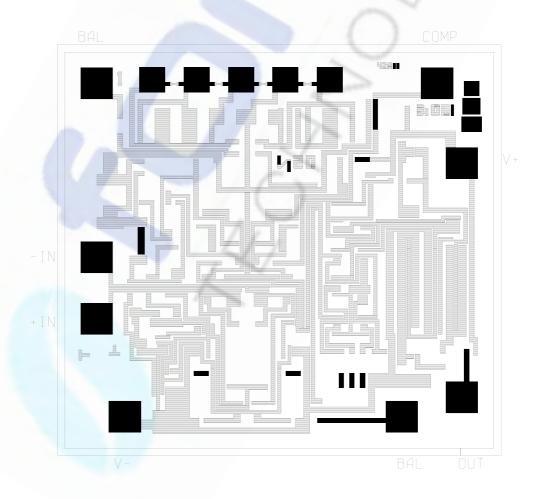
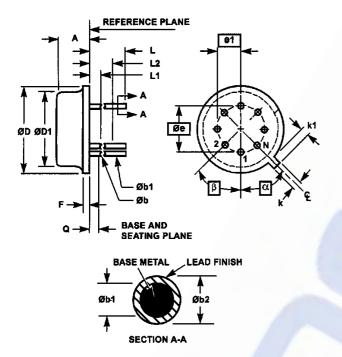



Figure 21. Metallisation layout

Metal Can Package

Notes:

- 20. (All leads) Øb applies between L1 and L2. Øb1 applies between L2 and 0.500 from the reference plane. Diameter is uncontrolled in L1 and beyond 0.500 from the reference plane.
- 21. Measured from maximum diameter of the product.
- 22. α is the basic spacing from the centerline of the tab to terminal 1 and β is the basic spacing of each lead or lead position (N -1 places) from a, looking at the bottom of the package.
- 23. N is the maximum number of terminal positions.
- 24. Controlling dimension: millimeter.

SF-8 8-lead metal can package

Symbol	Millin	neters	Inc	Note	
Syllibol	MIN	MAX	MIN	MAX	Note
Α	6.00	6.22	0.236	0.244	ı
Øb	0.41	0.48	0.016	0.019	13
Øb1	0.41	0.53	0.016	0.021	13
Øb2	0.41	0.61	0.016	0.024	-
ØD	9.09	9.19	0.335	0.375	ı
ØD1	8.23	8.43	0.305	0.335	ı
Øe	0.2	.00	5.	08	ı
e1	0.1	.00	2.	ı	
F	0.33	0.43	0.013	0.017	ı
k	0.69	0.86	0.027	0.034	ı
k1	0.69	1.14	0.027	0.045	14
٦	13.0	14.0	0.512	0.552	13
L1	-	1.27	-	0.05	13
L2	6.35	6.85	0.250	0.270	13
Q	0.5	-	0.02	-	-
α	45°		4.	15	
β	45°		4.	15	
N	8	3	:	16	

Figure 22. Package

Revision History

			Description
1	06/06/13	Original	
		Section 2	
7			
		450	
		7	And district of the last of th

Ashley Crt, Henley, Marlborough, Wilts, SN8 3RH UK

Tel: +44(0)1264 731200 Fax:+44(0)1264 731444

E-mail: sales@forcetechnologies.co.uk

www.forcetechnologies.co.uk

Unless otherwise stated in this SCD/Data sheet, Force Technologies Ltd reserve the right to make changes, without notice, in the products, Includ -ing circuits, cells and/or software, described or contained herein in order to improve design and/or performance. Force Technologies resumes no responsibility or liability for the use of any of these products, conveys no licence or any title under patent, copyright, or mask work to these products, and makes no representation or warranties that these products are free from patent, copyright or mask work infringement, unless otherwise specified.

Life Support Applications

Force Technologies products are not designed for use in life support appliances, devices or systems where malfunction of a Force Technologies product can reasonably be expected to result in a personal injury. Force Technologies customers using or selling Force Technologies products for use in such applications do so at their own risk and agree to fully indemnify Force Technologies for any damages resulting from such improper use or sale.

This document is the property of Force Technologies Ltd not to be reproduced or implemented without the written permission of Force Technologies Ltd

All trademarks acknowledged

Copyright Force Technologies Ltd 2013