

# Normally – OFF Silicon Carbide Junction Transistor

 $V_{DS}$  = 600 V  $R_{DS(ON)}$  = 110 mΩ  $I_{D (Tc = 25^{\circ}C)}$  = 32 A  $h_{FE (Tc = 25^{\circ}C)}$  = 110

#### **Features**

- 225°C maximum operating temperature
- Gate Oxide Free SiC Switch
- Exceptional Safe Operating Area
- Excellent Gain Linearity
- Temperature Independent Switching Performance
- Low Output Capacitance
- Positive Temperature Coefficient of R<sub>DS,ON</sub>
- Suitable for Connecting an Anti-parallel Diode

## **Advantages**

- Compatible with Si MOSFET/IGBT Gate Drive ICs
- > 20 µs Short-Circuit Withstand Capability
- Lowest-in-class Conduction Losses
- High Circuit Efficiency
- Minimal Input Signal Distortion
- · High Amplifier Bandwidth

## **Package**

RoHS Compliant





SMD0.5 / TO - 276 (Hermetic Package)

## **Applications**

- Down Hole Oil Drilling, Geothermal Instrumentation
- Hybrid Electric Vehicles (HEV)
- Solar Inverters
- Switched-Mode Power Supply (SMPS)
- Power Factor Correction (PFC)
- · Induction Heating
- Uninterruptible Power Supply (UPS)
- Motor Drives

#### **Absolute Maximum Ratings**

| Parameter                         | Symbol          | Conditions                                                           | Values                                    | Unit |  |
|-----------------------------------|-----------------|----------------------------------------------------------------------|-------------------------------------------|------|--|
| Drain – Source Voltage            | $V_{DS}$        | V <sub>GS</sub> = 0 V                                                | 600                                       | V    |  |
| Continuous Drain Current          | I <sub>D</sub>  | $T_J = 225^{\circ}C, T_C = 25^{\circ}C$                              | 32                                        | Α    |  |
| Continuous Gate Current           | $I_{GM}$        |                                                                      | 2                                         | Α    |  |
| Turn-Off Safe Operating Area      | RBSOA           | $T_{VJ}$ = 225°C, $I_{G}$ = 1.5 A,<br>Clamped Inductive Load         | $I_{D,max} = 16$ @ $V_{DS} \le V_{DSmax}$ | Α    |  |
| Short Circuit Safe Operating Area | SCSOA           | $T_{VJ}$ = 225°C, $I_G$ = 1.5 A, $V_{DS}$ = 400 V,<br>Non Repetitive | >20                                       | μs   |  |
| Reverse Gate – Source Voltage     | V <sub>GS</sub> | ·                                                                    | 30                                        | V    |  |
| Reverse Drain – Source Voltage    | $V_{DS}$        |                                                                      | 40                                        | V    |  |
| Power Dissipation                 | $P_{tot}$       | $T_J = 225^{\circ}C, T_C = 25^{\circ}C$                              | 330                                       | W    |  |
| Operating and Storage Temperature | $T_{j},T_{stg}$ |                                                                      | -55 to 225                                | °C   |  |

### **Electrical Characteristics**

| Parameter                    | Symbol              | Conditions -                                                              | Values |      | l lmi4 |      |
|------------------------------|---------------------|---------------------------------------------------------------------------|--------|------|--------|------|
|                              |                     |                                                                           | min.   | typ. | max.   | Unit |
| On Characteristics           |                     |                                                                           |        |      |        |      |
| Drain – Source On Resistance | R <sub>DS(ON)</sub> | $I_D = 16 \text{ A}, I_G = 500 \text{ mA}, T_j = 25 \text{ °C}$           |        | 110  |        | mΩ   |
|                              |                     | $I_D = 16 \text{ A}, I_G = 1000 \text{ mA}, T_j = 175 °C$                 |        | 170  |        |      |
|                              |                     | $I_D = 16 \text{ A}, I_G = 1000 \text{ mA}, T_j = 250 ^{\circ}\text{C}$   |        | 260  |        |      |
| Gate Forward Voltage         | $V_{GS(FWD)}$       | $I_G = 500 \text{ mA}, T_j = 25 \text{ °C}$                               |        | 3    |        | V    |
|                              |                     | $I_G = 500 \text{ mA}, T_j = 250 \text{ °C}$                              |        | 2.6  |        |      |
| DC Current Gain              | β                   | $V_{DS} = 5 \text{ V}, I_{D} = 20 \text{ A}, T_{j} = 25 ^{\circ}\text{C}$ | 80     | 110  |        |      |
|                              |                     | $V_{DS}$ = 5 V, $I_{D}$ = 20 A, $T_{j}$ = 250 °C                          | 50     | 75   |        |      |
| Off Characteristics          |                     |                                                                           |        |      |        |      |
|                              |                     | $V_R = 600 \text{ V}, V_{GS} = 0 \text{ V}, T_j = 25 \text{ °C}$          |        | 10   | 100    |      |
| Drain Leakage Current        | $I_{	extsf{DSS}}$   | $V_R = 600 \text{ V}, V_{GS} = 0 \text{ V}, T_j = 175 ^{\circ}\text{C}$   |        | 40   | 400    | μΑ   |
|                              |                     | $V_R = 600 \text{ V}, V_{GS} = 0 \text{ V}, T_j = 250 ^{\circ}\text{C}$   |        | 100  | 600    | •    |



## **Electrical Characteristics**

| Parameter                           | Symbol                             | Conditions                                                                                                                                                                                 | Values |      |      | 1114 |
|-------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|------|------|
|                                     |                                    |                                                                                                                                                                                            | min.   | typ. | max. | Unit |
| Dynamic Characteristics             |                                    |                                                                                                                                                                                            |        |      |      |      |
| Input Capacitance                   | C <sub>iss</sub>                   | $V_{GS} = 0 \text{ V}, V_D = 35 \text{ V}, f = 1 \text{ MHz}$                                                                                                                              |        | 1535 |      | pF   |
| Reverse Transfer/Output Capacitance | C <sub>rss</sub> /C <sub>oss</sub> | V <sub>D</sub> = 35 V, f = 1 MHz                                                                                                                                                           |        | 157  |      | pF   |
| Output Capacitance Stored Energy    | E <sub>oss</sub>                   | $V_{GS} = 0 \text{ V}, V_D = 35 \text{ V}, f = 1 \text{ MHz}$                                                                                                                              |        | 96   |      | nJ   |
| Switching Characteristics           |                                    |                                                                                                                                                                                            |        |      |      |      |
| Turn On Delay Time                  | $t_{d(on)}$                        |                                                                                                                                                                                            |        | 15   |      | ns   |
| Rise Time                           | t <sub>r</sub>                     | $V_{DD} = 400 \text{ V}, I_D = 16 \text{ A},$                                                                                                                                              |        | 40   |      | ns   |
| Turn Off Delay Time                 | $t_{d(off)}$                       | $R_G$ = 22 $\Omega$ , $C_G$ = 9 nF<br>Single-Level Gate Driver<br>$V_{GS}$ = -8/15 $V$ , $T_J$ = 175 °C<br>Refer to Figure 11 for gate drive<br>current waveforms                          |        | 70   |      | ns   |
| Fall Time                           | t <sub>f</sub>                     |                                                                                                                                                                                            |        | 80   |      | ns   |
| Turn-On Energy Per Pulse            | E <sub>on</sub>                    |                                                                                                                                                                                            |        | 65   |      | μJ   |
| Turn-Off Energy Per Pulse           | E <sub>off</sub>                   |                                                                                                                                                                                            |        | 365  |      | μJ   |
| Total Switching Energy              | E <sub>ts</sub>                    |                                                                                                                                                                                            |        | 430  |      | μJ   |
| Turn On Delay Time                  | t <sub>d(on)</sub>                 | $V_{DD}$ = 400 V, $I_{D}$ = 16 A, $R_{G}$ = 22 $\Omega$ , $C_{G}$ = 9 nF Single-Level Gate Driver $V_{GS}$ = -8/15 V, $T_{J}$ = 250 °C Refer to Figure 11 for gate drive current waveforms |        | 10   |      | ns   |
| Rise Time                           | t <sub>r</sub>                     |                                                                                                                                                                                            |        | 40   |      | ns   |
| Turn Off Delay Time                 | $t_{d(off)}$                       |                                                                                                                                                                                            |        | 85   |      | ns   |
| Fall Time                           | t <sub>f</sub>                     |                                                                                                                                                                                            |        | 85   |      | ns   |
| Turn-On Energy Per Pulse            | E <sub>on</sub>                    |                                                                                                                                                                                            |        | 65   |      | μJ   |
| Turn-Off Energy Per Pulse           | E <sub>off</sub>                   |                                                                                                                                                                                            |        | 395  |      | μJ   |
| Total Switching Energy              | E <sub>ts</sub>                    | 7                                                                                                                                                                                          |        | 460  |      | μJ   |
| Thermal Characteristics             |                                    |                                                                                                                                                                                            |        |      |      |      |
| Thermal resistance, junction - case | $R_{thJC}$                         |                                                                                                                                                                                            |        | 0.6  |      | °C/W |







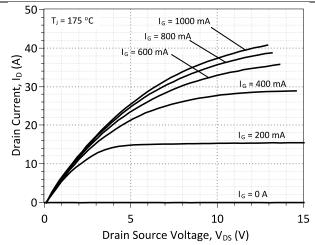



Figure 2: Typical Output Characteristics at 175 °C



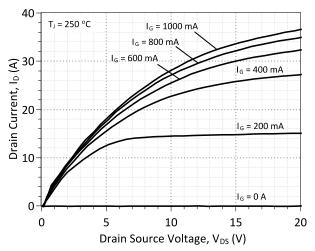



Figure 3: Typical Output Characteristics at 250 °C

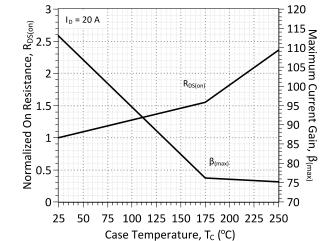



Figure 5: Normalized On-Resistance and Current Gain vs. Temperature

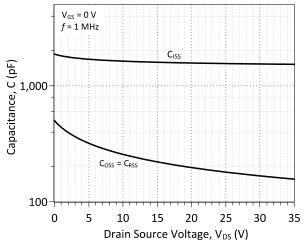



Figure 7: Typical Capacitance vs Drain-Source Voltage

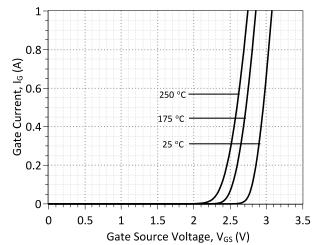
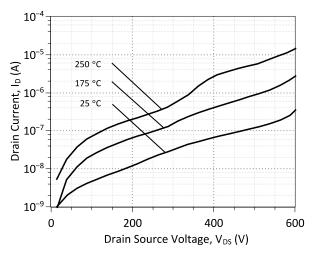




Figure 4: Typical Gate Source I-V Characteristics vs. Temperature



**Figure 6: Typical Blocking Characteristics** 

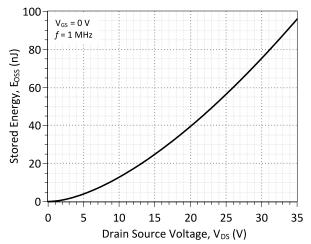
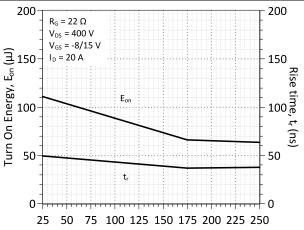




Figure 8: Output Capacitance Stored Energy







Case Temperature,  $T_C$  (°C) Figure 9: Typical Turn On Energy Losses and Switching Times vs. Temperature

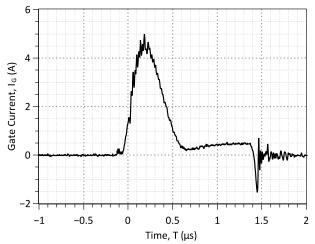



Figure 11: Typical Gate Current Waveform

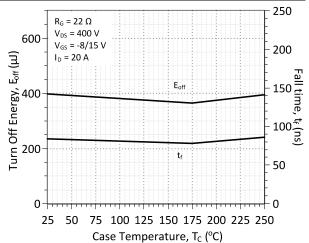



Figure 10: Typical Turn Off Energy Losses and Switching Times vs. Temperature



## **Gate Drive Theory of Operation**

The SJT transistor is a current controlled transistor which requires a positive gate current for turn-on as well as to remain in on-state. An ideal gate current waveform for ultra-fast switching of the SJT, while maintaining low gate drive losses, is shown in Figure 12.

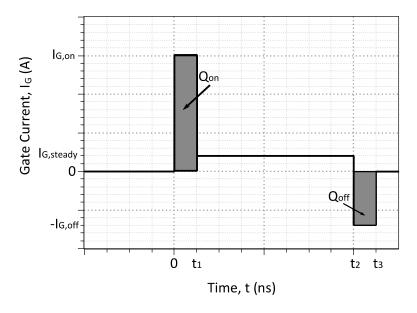



Figure 12: Idealized Gate Current Waveform

#### Gate Currents, $I_{G,pk}/I_{G,pk}$ and Voltages during Turn-On and Turn-Off

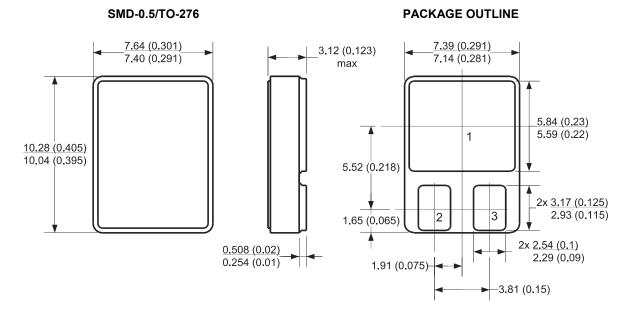
An SJT is rapidly switched from its blocking state to on-state, when the necessary gate charge,  $Q_G$ , for turn-on is supplied by a burst of high gate current,  $I_{G,on}$ , until the gate-source capacitance,  $C_{GS}$ , and gate-drain capacitance,  $C_{GD}$ , are fully charged.

$$I_{G,on} * t_1 \ge Q_{gs} + Q_{gd}$$

The  $I_{G,pon}$  pulse should ideally terminate, when the drain voltage falls to its on-state value, in order to avoid unnecessary drive losses during the steady on-state. In practice, the rise time of the  $I_{G,on}$  pulse is affected by the parasitic inductances,  $L_{par}$  in the package and drive circuit. A voltage developed across the parasitic inductance in the source path,  $L_s$ , can de-bias the gate-source junction, when high drain currents begin to flow through the device. The applied gate voltage should be maintained high enough, above the  $V_{GS,ON}$  level to counter these effects.

A high negative peak current,  $-I_{G,off}$  is recommended at the start of the turn-off transition, in order to rapidly sweep out the injected carriers from the gate, and achieve rapid turn-off. While satisfactory turn off can be achieved with  $V_{GS} = 0$  V, a negative gate voltage  $V_{GS}$  may be used in order to speed up the turn-off transition.

### Steady On-State


After the device is turned on,  $I_G$  may be advantageously lowered to  $I_{G,steady}$  for reducing unnecessary gate drive losses. The  $I_{G,steady}$  is determined by noting the DC current gain,  $h_{FE}$ , of the device.

The desired  $I_{G,steady}$  is determined by the peak device junction temperature  $T_J$  during operation, drain current  $I_D$ , DC current gain  $h_{FE}$ , and a 50 % safety margin to ensure operating the device in the saturation region with low on-state voltage drop by the equation:

$$I_{G,steady} \approx \frac{I_D}{h_{FE}(T,I_D)} * 1.5$$



#### Package Dimensions:



#### NOTE

- 1. CONTROLLED DIMENSION IS MILLIMETER. DIMENSION IN BRACKET IS INCH.
- 2. DIMENSIONS DO NOT INCLUDE END FLASH, MOLD FLASH, MATERIAL PROTRUSIONS

| Revision History |                   |                                    |            |  |
|------------------|-------------------|------------------------------------|------------|--|
| Date             | Revision Comments |                                    | Supersedes |  |
| 2014/08/25       | 5                 | Updated Electrical Characteristics |            |  |
| 2014/03/19       | 4                 | Updated Gate Drive Section         |            |  |
| 2014/02/14       | 3                 | Updated Electrical Characteristics |            |  |
| 2013/12/19       | 2                 | Updated Gate Drive Section         |            |  |
| 2013/11/18       | 1                 | Updated Electrical Characteristics |            |  |
| 2012/08/24       | 0                 | Initial release                    |            |  |
|                  |                   |                                    |            |  |

Published by GeneSiC Semiconductor, Inc. 43670 Trade Center Place Suite 155 Dulles, VA 20166

GeneSiC Semiconductor, Inc. reserves right to make changes to the product specifications and data in this document without notice.

GeneSiC disclaims all and any warranty and liability arising out of use or application of any product. No license, express or implied to any intellectual property rights is granted by this document.

Unless otherwise expressly indicated, GeneSiC products are not designed, tested or authorized for use in life-saving, medical, aircraft navigation, communication, air traffic control and weapons systems, nor in applications where their failure may result in death, personal injury and/or property damage.



## **SPICE Model Parameters**

This is a secure document. Please copy this code from the SPICE model PDF file on our website (<a href="http://www.genesicsemi.com/images/hit\_sic/sjt/2N7640-GA">http://www.genesicsemi.com/images/hit\_sic/sjt/2N7640-GA</a> SPICE.pdf) into LTSPICE (version 4) software for simulation of the 2N7640-GA.

```
MODEL OF GeneSiC Semiconductor Inc.
     $Revision: 1.2
                                $
     $Date: 23-JUN-2014
     GeneSiC Semiconductor Inc.
     43670 Trade Center Place Ste. 155
    Dulles, VA 20166
    COPYRIGHT (C) 2014 GeneSiC Semiconductor Inc.
     ALL RIGHTS RESERVED
* These models are provided "AS IS, WHERE IS, AND WITH NO WARRANTY
* OF ANY KIND EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED
* TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE."
* Models accurate up to 2 times rated drain current.
.model 2N7640 NPN
+ IS
         6.03E-47
+ ISE
          1.72E-28
          3.23
+ EG
          122
+ BF
+ BR
          0.55
+ IKF
         300
+ NF
         1.868
+ NE
+ RB
          2.50
+ RE
          0.088
+ RC
          0.01
+ CJC
          5.68E-10
+ VJC
          2.978967839
+ MJC
         0.466424924
+ CJE
          1.72E-09
          2.77859888
+ VJE
+ MJE
         0.48415
+ XTI
          3
+ XTB
          -0.78
+ TRC1
          7.00E-02
+ VCEO
          600
+ ICRATING 32
          GeneSiC Semiconductor
+ MFG
```

\* End of 2N7640-GA SPICE Model