

Normally – OFF Silicon Carbide Junction Transistor

 V_{DS} = 600 V $R_{DS(ON)}$ = 65 mΩ $I_{D (Tc = 25^{\circ}C)}$ = 32 A $h_{FE (Tc = 25^{\circ}C)}$ = 110

Features

- 225°C maximum operating temperature
- Electrically Isolated Base Plate
- Gate Oxide Free SiC Switch
- Exceptional Safe Operating Area
- Excellent Gain Linearity
- Temperature Independent Switching Performance
- Low Output Capacitance
- Positive Temperature Coefficient of RDS,ON
- Suitable for Connecting an Anti-parallel Diode

Advantages

- Compatible with Si MOSFET/IGBT Gate Drive ICs
- > 20 μs Short-Circuit Withstand Capability
- Lowest-in-class Conduction Losses
- High Circuit Efficiency
- Minimal Input Signal Distortion
- · High Amplifier Bandwidth

Package

• RoHS Compliant

TO - 257 (Isolated Base-plate Hermetic Package)

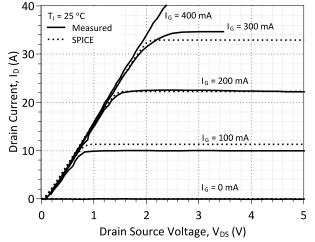
Applications

- Down Hole Oil Drilling, Geothermal Instrumentation
- Hybrid Electric Vehicles (HEV)
- Solar Inverters
- Switched-Mode Power Supply (SMPS)
- Power Factor Correction (PFC)
- · Induction Heating
- Uninterruptible Power Supply (UPS)
- Motor Drives

Absolute Maximum Ratings

Parameter	Symbol	Conditions	Values	Unit
Drain – Source Voltage	V_{DS}	V _{GS} = 0 V	600	V
Continuous Drain Current	I _D	$T_J = 225^{\circ}C, T_C = 25^{\circ}C$	32	Α
Gate Peak Current	I _{GM}		2	Α
Turn-Off Safe Operating Area	RBSOA	T_{VJ} = 225°C, I_{G} = 1.5 A, Clamped Inductive Load	$I_{D,max} = 32$ $\emptyset V_{DS} \le V_{DSmax}$	Α
Short Circuit Safe Operating Area	SCSOA	T_{VJ} = 225°C, I_G = 1.5 A, V_{DS} = 400 V, Non Repetitive	>20	μs
Reverse Gate – Source Voltage	V _{GS}	·	30	V
Reverse Drain – Source Voltage	V_{DS}		40	V
Power Dissipation	P _{tot}	$T_J = 225^{\circ}C, T_C = 25^{\circ}C$	172	W
Operating and Storage Temperature	T_{j},T_{stg}		-55 to 225	°C

Electrical Characteristics


Parameter	Cumhal	Conditions -	Values		1114	
	Symbol		min.	typ.	max.	Unit
On Characteristics						
Drain – Source On Resistance	R _{DS(ON)}	$\begin{split} I_D &= 20 \text{ A, } I_G = 400 \text{ mA, } T_J = 25 \text{ °C} \\ I_D &= 20 \text{ A, } I_G = 500 \text{ mA, } T_J = 125 \text{ °C} \\ I_D &= 20 \text{ A, } I_G = 1000 \text{ mA, } T_J = 175 \text{ °C} \\ I_D &= 20 \text{ A, } I_G = 1000 \text{ mA, } T_J = 250 \text{ °C} \\ \end{split}$		65 90 110 165		mΩ
Gate Forward Voltage	$V_{\text{GS(FWD)}}$	I_G = 1000 mA, T_j = 25 °C I_G = 1000 mA, T_i = 250 °C		3.0 2.7		V
DC Current Gain	h _{FE}	$\begin{array}{c} V_{DS} = 5 \text{ V, } I_D = 20 \text{ A, } T_j = 25 \text{ °C} \\ V_{DS} = 5 \text{ V, } I_D = 20 \text{ A, } T_j = 125 \text{ °C} \\ V_{DS} = 5 \text{ V, } I_D = 20 \text{ A, } T_j = 175 \text{ °C} \\ V_{DS} = 5 \text{ V, } I_D = 20 \text{ A, } T_j = 250 \text{ °C} \\ \end{array}$		112 78 73 69		
Off Characteristics						
Drain Leakage Current	I _{DSS}	$V_R = 600 \text{ V}, V_{GS} = 0 \text{ V}, T_j = 25 \text{ °C}$ $V_R = 600 \text{ V}, V_{GS} = 0 \text{ V}, T_j = 175 \text{ °C}$ $V_R = 600 \text{ V}, V_{GS} = 0 \text{ V}, T_j = 250 \text{ °C}$		10 50 100		μΑ
Gate Leakage Current	I _{SG}	V _{SG} = 20 V, T _j = 25 °C		20		nA

Electrical Characteristics

Parameter	Symbol	Conditions -	Values		1114	
			min.	typ.	max.	Unit
Capacitance Characteristics						
Input Capacitance	C _{iss}	V _{GS} = 0 V, V _D = 100 V, f = 1 MHz		2500		pF
Reverse Transfer/Output Capacitance	C_{rss}/C_{oss}	$V_D = 100 \text{ V}, f = 1 \text{ MHz}$		158		pF
Output Capacitance Stored Energy	E _{oss}	$V_{GS} = 0 \text{ V}, V_{D} = 100 \text{ V}, f = 1 \text{ MHz}$		0.8		μJ
Switching Characteristics						
Gate Resistance, Internal	$R_{G(INT)}$	f = 1 MHz, V _{AC} = 25 mV, T _j = 225 °C		2.6		Ω
Turn On Delay Time	$t_{d(on)}$	T _i = 25 °C, V _{DS} = 400 V, I _D = 20 A,		90		ns
Rise Time	t _r	Two-Level Gate Drive,		40		ns
Turn Off Delay Time	$t_{d(off)}$	$R_G = 1.53 \Omega, C_G = 25 \text{ nF},$		50		ns
Fall Time	t _f	V _{GH} = 18 V, V _{GL} = 6 V, V _{EE} = -10 V, IXDD614 Gate Drive IC.		30		ns
Turn-On Energy Per Pulse	E _{on}	L = 287 uH, FWD = GB20SLT12, Refer to Fig. 15 for gate current waveform		810		μJ
Turn-Off Energy Per Pulse	E _{off}			95		μJ
Total Switching Energy	E _{ts}			905		μJ
Turn On Delay Time	$t_{d(on)}$	$\begin{split} T_{J} = 250 ^{\circ}\text{C}, V_{DS} = 400 \text{V}, I_{D} = 20 \text{A}, \\ \text{Two-Level Gate Drive,} \\ R_{G} = 1.53 \Omega, C_{G} = 25 \text{nF,} \\ V_{GH} = 18 \text{V}, V_{GL} = 6 \text{V}, V_{EE} = -10 \text{V}, \\ \text{IXDD614 Gate Drive IC,} \\ L = 287 \text{uH, FWD} = \text{GB20SLT12,} \\ \text{Refer to Fig. 15 for gate current} \\ \text{waveform} \end{split}$		90		ns
Rise Time	t _r			20		ns
Turn Off Delay Time	$t_{d(off)}$			50		ns
Fall Time	t _f			20		ns
Turn-On Energy Per Pulse	E _{on}			140		μJ
Turn-Off Energy Per Pulse	E _{off}			45		μJ
Total Switching Energy	E _{ts}			185		μJ
Thermal Characteristics				1.10		°C/\\\'
Thermal resistance, junction - case	R_{thJC}			1.16		°C/W

Figures

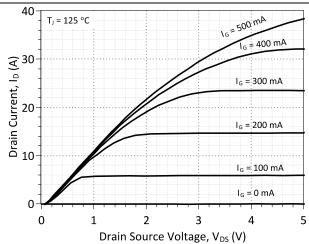


Figure 2: Typical Output Characteristics at 125 °C

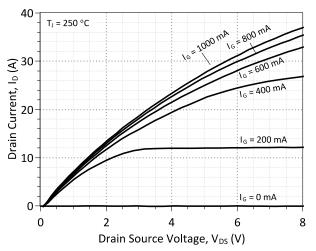


Figure 3: Typical Output Characteristics at 250 °C

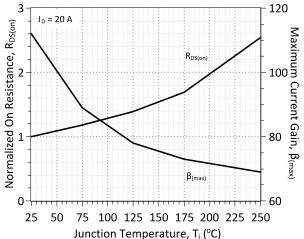


Figure 5: Normalized On-Resistance and Current Gain vs. Temperature

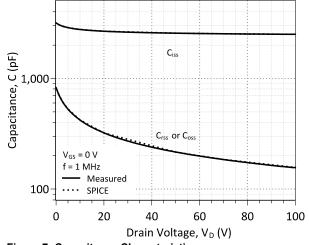


Figure 7: Capacitance Characteristics

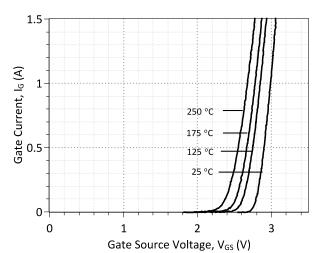


Figure 4: Typical Gate Source I-V Characteristics vs. Temperature

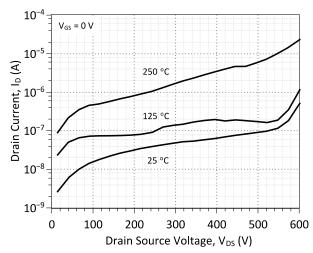


Figure 6: Typical Blocking Characteristics

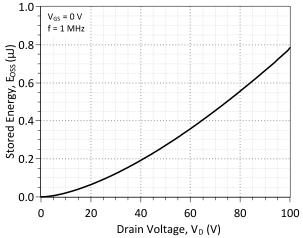


Figure 8: Output Capacitance Stored Energy

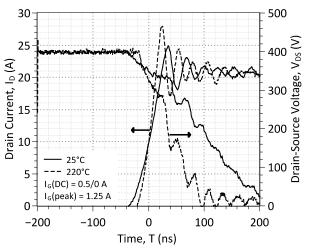


Figure 9: Typical Hard-switched Turn On Waveforms

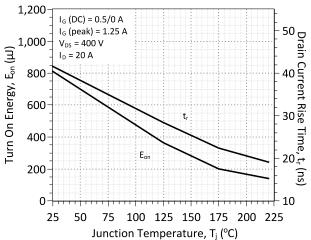


Figure 11: Typical Turn On Energy Losses and Switching Times vs. Temperature

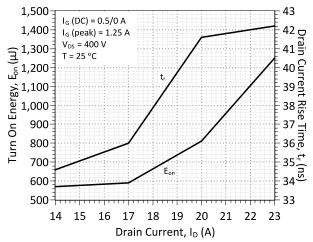


Figure 13: Typical Turn On Energy Losses and Switching Times vs. Drain Current

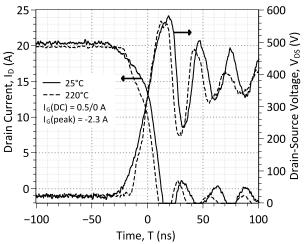


Figure 10: Typical Hard-switched Turn Off Waveforms

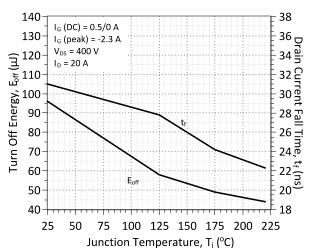


Figure 12: Typical Turn Off Energy Losses and Switching Times vs. Temperature

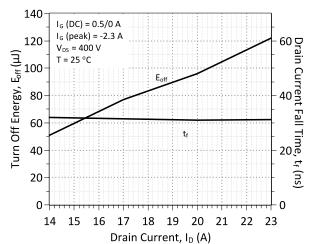


Figure 14: Typical Turn Off Energy Losses and Switching Times vs. Drain Current

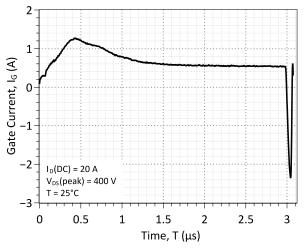


Figure 15: Typical Gate Current Waveform

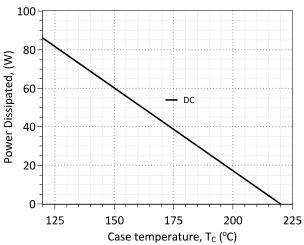


Figure 17: Power Derating Curve

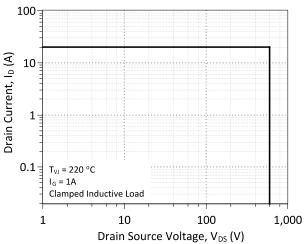


Figure 19: Turn-Off Safe Operating Area

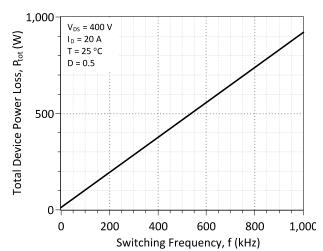


Figure 16: Typical Hard Switched Device Power Loss vs. Switching Frequency ¹

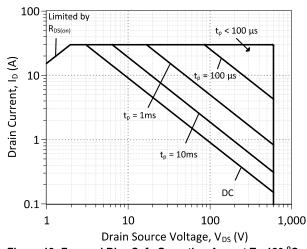


Figure 18: Forward Bias Safe Operating Area at $T_{\rm c}\text{=}120~^{\circ}\text{C}$

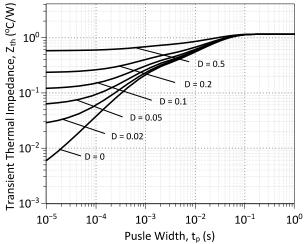


Figure 20: Transient Thermal Impedance

¹ – Representative values based on device switching energy loss. Actual losses will depend on gate drive conditions, device load, and circuit topology.

Gate Drive Theory of Operation

The SJT transistor is a current controlled transistor which requires a positive gate current for turn-on as well as to remain in on-state. An ideal gate current waveform for ultra-fast switching of the SJT, while maintaining low gate drive losses, is shown in Figure 21.

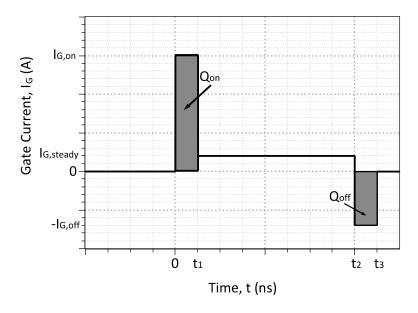


Figure 21: Idealized Gate Current Waveform

Gate Currents, $I_{G,pk}/I_{G,pk}$ and Voltages during Turn-On and Turn-Off

An SJT is rapidly switched from its blocking state to on-state, when the necessary gate charge, Q_G , for turn-on is supplied by a burst of high gate current, $I_{G,on}$, until the gate-source capacitance, C_{GS} , and gate-drain capacitance, C_{GD} , are fully charged.

$$I_{G,on} * t_1 \ge Q_{gs} + Q_{gd}$$

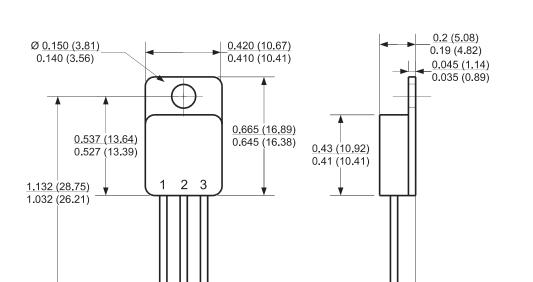
The $I_{G,pon}$ pulse should ideally terminate, when the drain voltage falls to its on-state value, in order to avoid unnecessary drive losses during the steady on-state. In practice, the rise time of the $I_{G,on}$ pulse is affected by the parasitic inductances, L_{par} in the package and drive circuit. A voltage developed across the parasitic inductance in the source path, L_s , can de-bias the gate-source junction, when high drain currents begin to flow through the device. The applied gate voltage should be maintained high enough, above the $V_{GS,ON}$ level to counter these effects.

A high negative peak current, $-I_{G,off}$ is recommended at the start of the turn-off transition, in order to rapidly sweep out the injected carriers from the gate, and achieve rapid turn-off. While satisfactory turn off can be achieved with $V_{GS} = 0$ V, a negative gate voltage V_{GS} may be used in order to speed up the turn-off transition.

Steady On-State

After the device is turned on, I_G may be advantageously lowered to $I_{G,steady}$ for reducing unnecessary gate drive losses. The $I_{G,steady}$ is determined by noting the DC current gain, h_{FE} , of the device.

The desired $I_{G,steady}$ is determined by the peak device junction temperature T_J during operation, drain current I_D , DC current gain h_{FE} , and a 50 % safety margin to ensure operating the device in the saturation region with low on-state voltage drop by the equation:


$$I_{G,steady} \approx \frac{I_D}{h_{FE}(T,I_D)} * 1.5$$

PACKAGE OUTLINE

0.12 (3.05) BSC

Package Dimensions:

0.1 (2.54) BSC

2 places

TO-257

NOTE

1. CONTROLLED DIMENSION IS INCH. DIMENSION IN BRACKET IS MILLIMETER.

0.035 (0.89)

0.025 (0.63) 3 places

2. DIMENSIONS DO NOT INCLUDE END FLASH, MOLD FLASH, MATERIAL PROTRUSIONS

Revision History					
Date	Revision	Comments	Supersedes		
2014/08/25	6	Updated Electrical Characteristics			
2014/03/18	5	Updated Gate Drive Section			
2014/02/10	4	Updated Electrical Characteristics			
2013/12/19	3	Updated Gate Drive Section			
2013/12/09	2	Updated Electrical Characteristics			
2013/11/18	1	Updated Electrical Characteristics			
2012/08/24	0	Initial release			

Published by GeneSiC Semiconductor, Inc. 43670 Trade Center Place Suite 155 Dulles, VA 20166

GeneSiC Semiconductor, Inc. reserves right to make changes to the product specifications and data in this document without notice.

GeneSiC disclaims all and any warranty and liability arising out of use or application of any product. No license, express or implied to any intellectual property rights is granted by this document.

Unless otherwise expressly indicated, GeneSiC products are not designed, tested or authorized for use in life-saving, medical, aircraft navigation, communication, air traffic control and weapons systems, nor in applications where their failure may result in death, personal injury and/or property damage.

SPICE Model Parameters

This is a secure document. Please copy this code from the SPICE model PDF file on our website (http://www.genesicsemi.com/images/hit_sic/sjt/2N7639-GA_SPICE.pdf) into LTSPICE (version 4) software for simulation of the 2N7639-GA.

```
MODEL OF GeneSiC Semiconductor Inc.
     $Revision: 1.2
                                 $
     $Date: 23-JUN-2014
                                 Ś
     GeneSiC Semiconductor Inc.
     43670 Trade Center Place Ste. 155
     Dulles, VA 20166
     COPYRIGHT (C) 2014 GeneSiC Semiconductor Inc.
     ALL RIGHTS RESERVED
* These models are provided "AS IS, WHERE IS, AND WITH NO WARRANTY
* OF ANY KIND EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED
* TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE."
* Models accurate up to 2 times rated drain current.
.model 2N7639-GA NPN
         5.00E-47
+ IS
          1.26E-28
+ ISE
+ EG
          3.23
+ BF
          114
          0.55
+ BR
+ IKF
          700
+ NF
          1
          2
+ NE
+ RB
         2.60
+ RE
          0.01
+ RC
          0.045
+ CJC
          8.2281E-10
+ VJC
          3.31126
+ MJC
          0.48117
+ CJE
          2.33957E-9
          2.91486
+ VJE
          0.48211
+ MJE
+ XTI
          3
+ XTB
          -1.2
          6.20E-03
+ TRC1
+ VCEO
          600
+ ICRATING 32
+ MFG
          GeneSiC Semiconductor
* End of 2N7639-GA SPICE Model
```