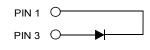


High Temperature Silicon Carbide Power Schottky Diode

V_{RRM} = 650 V $I_{F (Tc=25^{\circ}C)}$ = 45 A Q_{C} = 66 nC

Features

- 650 V Schottky rectifier
- 250 °C maximum operating temperature
- · Zero reverse recovery charge
- · Superior surge current capability
- Positive temperature coefficient of V_F
- Temperature independent switching behavior
- Lowest figure of merit Q_C/I_F
- Available screened to Mil-PRF-19500


Advantages

- High temperature operation
- Improved circuit efficiency (Lower overall cost)
- · Low switching losses
- Ease of paralleling devices without thermal runaway
- Smaller heat sink requirements
- · Industry's lowest reverse recovery charge
- Industry's lowest device capacitance
- · Ideal for output switching of power supplies
- Best in class reverse leakage current at operating temperature

Package

RoHS Compliant

SMD0.5 / TO - 276 (Hermetic Package)

Applications

- Down Hole Oil Drilling, Geothermal Instrumentation
- High Temperature DC/DC Converters
- · High Temperature Motor and Servo Drives
- High Temperature Inverters
- High Temperature Actuator Control
- · Military Power Supplies

Maximum Ratings at T_i = 250 °C, unless otherwise specified

Parameter	Symbol	Conditions	Values	Unit
Repetitive peak reverse voltage	V_{RRM}		650	V
Continuous forward current	l _F	T _C = 25 °C	45	Α
Continuous forward current	l _F	T _C ≤ 225 °C	14.6	Α
RMS forward current	I _{F(RMS)}	T _C ≤ 225 °C	26	Α
Surge non-repetitive forward current, Half Sine Wave	$I_{F,SM}$	T_{C} = 25 °C, t_{P} = 10 ms	140	Α
Non-repetitive peak forward current	$I_{F,max}$	T_C = 25 °C, t_P = 10 μ s	650	Α
l ² t value	∫i² dt	$T_{\rm C}$ = 25 °C, $t_{\rm P}$ = 10 ms	98	A^2S
Power dissipation	P _{tot}	T _C = 25 °C	453	W
Operating and storage temperature	T_{j} , T_{stg}		-55 to 250	°C

Electrical Characteristics at T_j = 250 °C, unless otherwise specified

Parameter	Cumbal	Conditions —		Values		1114	
	Symbol			min.	typ.	max.	Unit
Diode forward voltage	V _F	I _F = 15 A, T _j = 25 °C		1.5		V	
	VF	I _F = 15 A, T _j = 210 °C		2.2			
Reverse current	1	$V_R = 650 \text{ V}, T_j = 25 ^{\circ}\text{C}$		1	5	μΑ	
	I _R	$V_R = 650 \text{ V}, T_j = 250 ^{\circ}\text{C}$		50	200		
Total capacitive charge	Q_{C}	$I_F \le I_{F,MAX}$ - $dI_F/dt = 200 \text{ A/}\mu\text{s}$	V _R = 400 V		66		nC
Switching time	t _s	T _i = 210 °C	V _R = 400 V		< 49		ns
Total capacitance		V _R = 1 V, f = 1 MHz,	T _j = 25 °C		1107		
	С	$V_R = 400 \text{ V}, f = 1 \text{ MHz}$, T _j = 25 °C		103		pF
		V _P = 650 V. f = 1 MHz	. T _i = 25 °C		99		

Thermal Characteristics

Thermal resistance, junction - case	R _{thJC}	0.49	°C/W
Mechanical Properties			

М

Aug 2014

Mounting torque

Nm

0.6

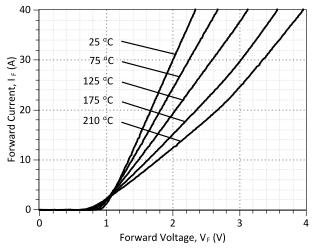


Figure 1: Typical Forward Characteristics

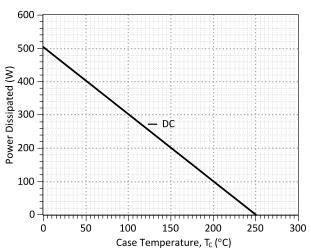


Figure 3: Power Derating Curve

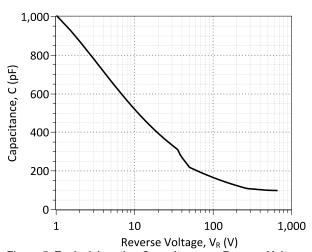


Figure 5: Typical Junction Capacitance vs Reverse Voltage Characteristics

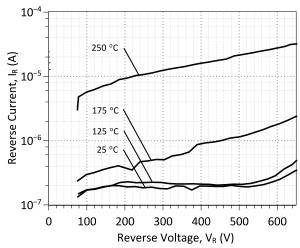


Figure 2: Typical Reverse Characteristics

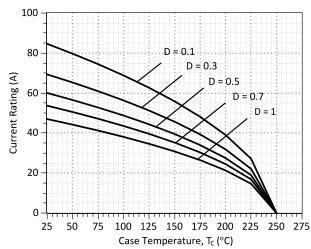


Figure 4: Current Derating Curves (D = t_p/T , t_p = 400 μ s) (Considering worst case Z_{th} conditions)

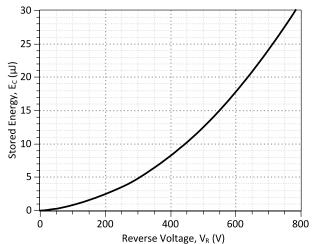


Figure 6: Typical Switching Energy vs Reverse Voltage Characteristics

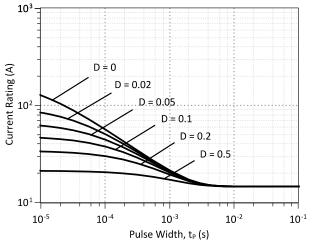


Figure 7: Current vs Pulse Duration Curves at T_c = 225 °C

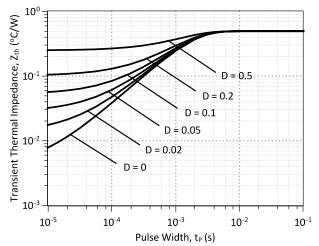
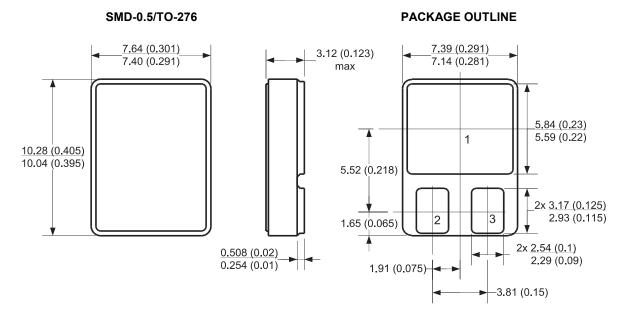



Figure 8: Transient Thermal Impedance

Package Dimensions:

NOTE

- 1. CONTROLLED DIMENSION IS INCH. DIMENSION IN BRACKET IS MILLIMETER.
- 2. DIMENSIONS DO NOT INCLUDE END FLASH, MOLD FLASH, MATERIAL PROTRUSIONS

Revision History					
Date	Revision	Comments	Supersedes		
2014/08/26	1	Updated Electrical Characteristics			
2012/04/24	0	Initial release			

Published by GeneSiC Semiconductor, Inc. 43670 Trade Center Place Suite 155 Dulles, VA 20166

GeneSiC Semiconductor, Inc. reserves right to make changes to the product specifications and data in this document without notice.

GeneSiC disclaims all and any warranty and liability arising out of use or application of any product. No license, express or implied to any intellectual property rights is granted by this document.

Unless otherwise expressly indicated, GeneSiC products are not designed, tested or authorized for use in life-saving, medical, aircraft navigation, communication, air traffic control and weapons systems, nor in applications where their failure may result in death, personal injury and/or property damage.

SPICE Model Parameters

Copy the following code into a SPICE software program for simulation of the 1N8035-GA device.

```
MODEL OF GeneSiC Semiconductor Inc.
     $Revision: 1.0
     $Date: 05-SEP-2013
    GeneSiC Semiconductor Inc.
    43670 Trade Center Place Ste. 155
    Dulles, VA 20166
    http://www.genesicsemi.com/index.php/hit-sic/schottky
    COPYRIGHT (C) 2013 GeneSiC Semiconductor Inc.
    ALL RIGHTS RESERVED
* These models are provided "AS IS, WHERE IS, AND WITH NO WARRANTY
* OF ANY KIND EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED
* TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE."
* Models accurate up to 2 times rated drain current.
* Start of 1N8035-GA SPICE Model
.SUBCKT 1N8035 ANODE KATHODE
D1 ANODE KATHODE 1N8035 25C; Call the Schottky Diode Model
D2 ANODE KATHODE 1N8035 PIN; Call the PiN Diode Model
.MODEL 1N8035 25C D
+ IS 8.46E-17
                        RS
                                    0.0319
         1
                         IKF
                                    1000
+ N
+ EG
         1.2
                        XTI
                                    3
+ TRS1 0.0038
+ CJO 1.26E-09
                        TRS2
                                   3.00E-05
                        VJ
                                    0.438
         1.5278
                                   0.5
+ M
                        FC
+ TT
         1.00E-10
                        BV
                                    650
+ IBV
         1.00E-03
                         VPK
                                    650
         20
+ IAVE
                         TYPE
                                    SiC Schottky
+ MFG GeneSiC_Semiconductor
.MODEL 1N8035 PIN D
+ IS 2.77E-10
                        RS
                                   0.086693
+ N
         3.3505
                         IKF
                                    3.67E-06
+ EG
         3.23
                        XTI
                                    -10
+ FC
         0.5
                        TT
+ BV
                        IBV
         650
                                   1.00E-03
         650
                                   20
+ VPK
                         IAVE
+ TYPE
         SiC PiN
.ENDS
```

* End of 1N8035-GA SPICE Model

Nov 2013