GC2X50MPS06-227 650V 100A SiC Schottky MPS[™] Diode

Silicon Carbide Schottky Diode

VRRM =	650 V
 F (Tc = 100°C) =	126 A *
Qc =	280 nC *

Features

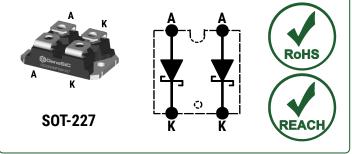
Advantages

- Low V_F for High Temperature Operation
- Enhanced Surge and Avalanche Robustness
- Superior Figure of Merit Q_C/I_F
- Low Thermal Resistance
- Low Reverse Leakage Current
- Temperature Independent Fast Switching
- Positive Temperature Coefficient of V_F
- High dV/dt Ruggedness

Improved System EfficiencyHigh System Reliability

• Optimal Price Performance

Reduced Cooling Requirements


Zero Reverse Recovery Current

• Increased System Power Density

Enables Extremely Fast Switching

• Easy to Parallel without Thermal Runaway

Package

Applications

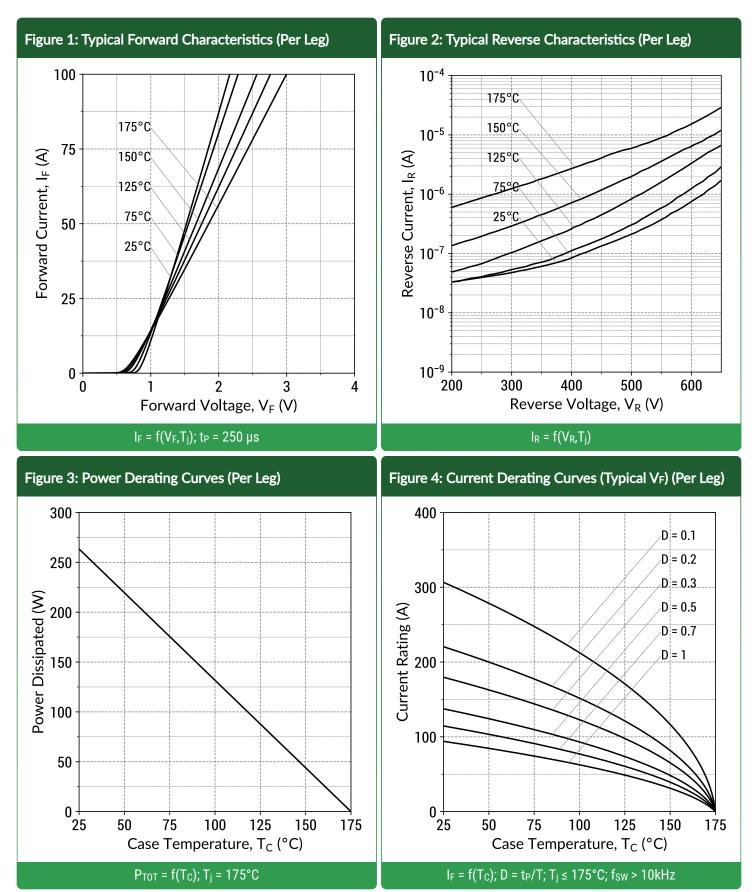
- Power Factor Correction (PFC)
- Electric Vehicles and Battery Chargers
- Solar Inverters
- High Frequency Converters
- Switched Mode Power Supply (SMPS)
- Motor Drives
- Anti-Parallel / Free-Wheeling Diode
- Induction Heating & Welding

Absolute Maximum Ratings (At Tc = 25°C Unless Otherwise Stated)

Parameter	Symbol	Conditions	Values	Unit	Note
Repetitive Peak Reverse Voltage (Per Leg)	V _{RRM}		650	V	
		T _C = 75°C, D = 1	74 / 148		-: 4
Continuous Forward Current (Per Leg / Per Device)	lF	T _c = 100°C, D = 1 T _c = 123°C, D = 1	63 / 126 50 / 100	A	Fig. 4
Non-Repetitive Peak Forward Surge Current, Half Sine	I _{F,SM}	T _C = 25°C, t _P = 10 ms	400	А	
Wave (Per Leg) Repetitive Peak Forward Surge Current, Half Sine Wave		$T_{C} = 150^{\circ}C, t_{P} = 10 \text{ ms}$ $T_{C} = 25^{\circ}C, t_{P} = 10 \text{ ms}$	320		
(Per Leg)	I _{F,RM}	Tc = 150°C, t _P = 10 ms	168	Α	
Non-Repetitive Peak Forward Surge Current (Per Leg)	I _{F,MAX}	T _C = 25°C, t _P = 10 μs	2000	Α	
i ² t Value (Per Leg)	∫i²dt	T _C = 25°C, t _P = 10 ms	800	A ² s	
Non-Repetitive Avalanche Energy (Per Leg)	E _{AS}	L = 0.7 mH, I _{AS} = 50 A	841	mJ	
Diode Ruggedness (Per Leg)	dV/dt	$V_{R} = 0 \sim 520 V$	200	V/ns	
Power Dissipation (Per Leg / Per Device)	Ртот	T _C = 25°C	263 / 526	W	Fig. 3
Operating and Storage Temperature	T_{j} , T_{stg}		-55 to 175	°C	

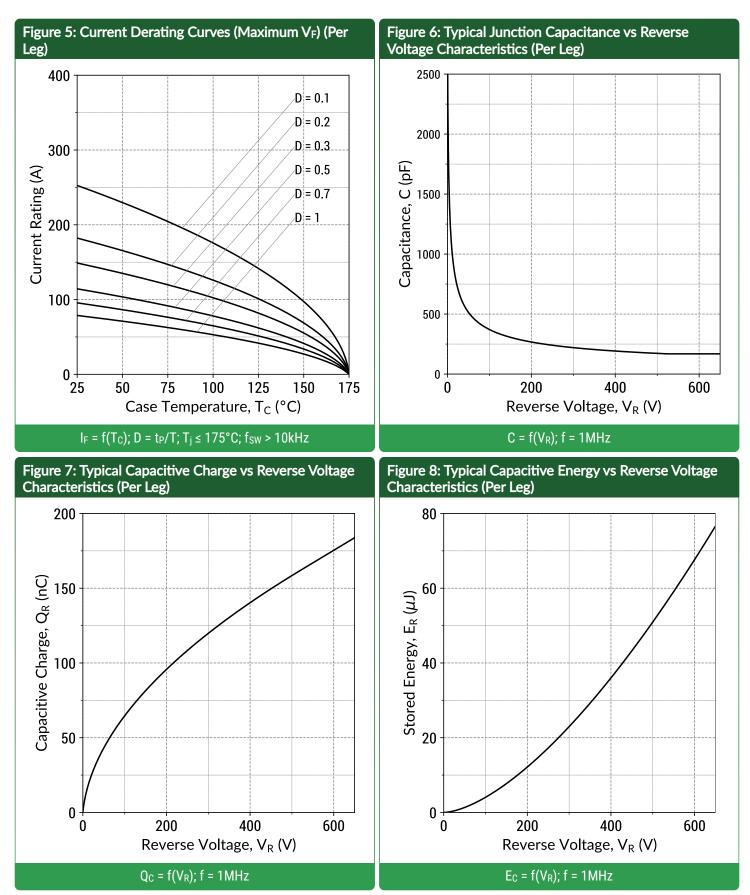
* Per Device

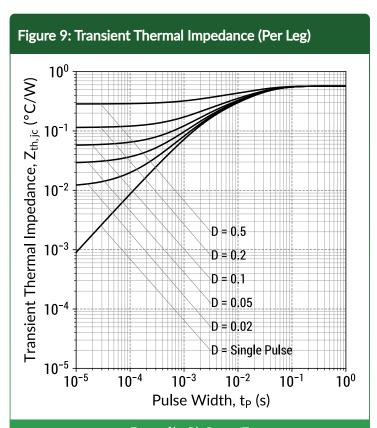
Electrical Characteristics (Per Leg)


Deremeter	Symbol	Conditions		Values			11	Nata
Parameter	Symbol			Min.	Тур.	Max.	Unit	Note
Diada Farward Valtaga	V _F	I _F = 50 A, T _j = 25°C			1.5	1.8	V	Fig. 1
Diode Forward Voltage	V F	I _F = 50 A, T _j = 175°C			1.8			
Reverse Current		V _R = 650 V, T _j = 25°C			1	5	μA	Fig. 2
	I _R	V _R = 650 V, T _j = 175°C			16			
Total Capacitive Charge	0-		V _R = 200 V		96		nC	Fig. 7
	Qc	I _F ≤ I _{F,MAX}	V _R = 400 V		140	lic	Fig. 7	
Switching Time	+-	dl _F /dt = 200 A/µs	V _R = 200 V		. 10		20	
	ts		V _R = 400 V		< 10		ns	
Total Capacitance	0	V _R = 1 V, f = 1MHz			2239		pF	Fig. 6
	С	V _R = 400 V, f = 1MHz			192			

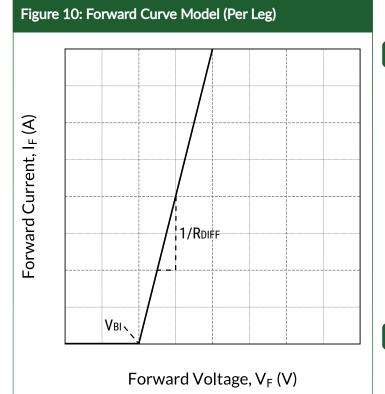
Thermal/Package Characteristics

Deremeter	Symbol	Conditions	Values			11	Note
Parameter		Conultions	Min.	Тур.	Max.	Unit	Note
Thermal Resistance, Junction - Case (Per Leg)	R _{thJC}			0.57		°C/W	Fig. 9
Weight	WT			28.0		g	
Mounting Torque	T _M	Screws to Heatsink			1.5	Nm	
Terminal Connection Torque	Tc	M4 Screws			1.3	Nm	
lealation Valtage (DMS)	V _{ISO}	t = 1s (50/60 Hz)		3000		V	
Isolation Voltage(RMS)	V ISO	t = 60s (50/60 Hz)		2500		v	
Creepage Distance on Surface	d _{Ctt}	Terminal to Terminal		10.5		mm	
	d _{Ctb}	Terminal to Backside		8.5		mm	
Striking Distance Through Air	d _{Stt}	Terminal to Terminal		3.2		mm	
Striking Distance Through An	d _{Stb}	Terminal to Backside		6.8			


GC2X50MPS06-227 650V 100A SiC Schottky MPS[™] Diode



Apr. 20 Rev 1.4



Apr. 20 Rev 1.4

 $Z_{th,jc} = f(t_P,D); D = t_P/T$

 $I_F = f(V_F, T_j)$

Forward Curve Model Equation:

 $I_F = (V_F - V_{BI})/R_{DIFF} (A)$

Built-In Voltage (V_{BI}):

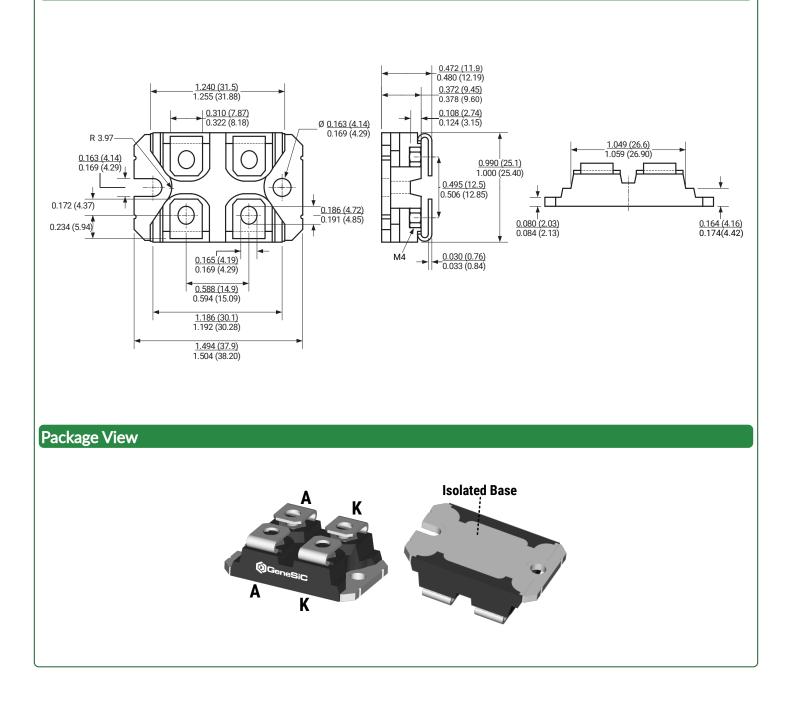
 $V_{BI}(T_j) = m \times T_j + n (V)$ m = -0.0012 (V/°C) n = 0.916 (V)

Differential Resistance (RDIFF):

 $\begin{aligned} R_{\text{DIFF}}(T_j) &= a \times T_j^2 + b \times T_j + c \ (\Omega) \\ a &= 3.16e\text{-}07 \ (\Omega/^\circ\text{C}^2) \\ b &= 4.55e\text{-}06 \ (\Omega/^\circ\text{C}) \\ c &= 0.0125 \ (\Omega) \end{aligned}$

Forward Power Loss Equation:

 $P_{LOSS} = V_{BI}(T_j) \times I_{AVG} + R_{DIFF}(T_j) \times I_{RMS}^2$


Apr. 20 Rev 1.4

GC2X50MPS06-227 650V 100A SiC Schottky MPS[™] Diode

Package Dimensions

SOT-227 Package Outline

NOTE

- 1. CONTROLLED DEIMENSION IS INCH. DIMENSION IN BRACKET IS MILLIMETER.
- 2. DIMENSIONS DO NOT INCLUDE END FLASH, MOLD FLASH, MATERIAL PROTRUSIONS.

RoHS Compliance

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS 2), as adopted by EU member states on January 2, 2013 and amended on March 31, 2015 by EU Directive 2015/863. RoHS Declarations for this product can be obtained from your GeneSiC representative.

REACH Compliance

REACH substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact a GeneSiC representative to insure you get the most up-to-date REACH SVHC Declaration. REACH banned substance information (REACH Article 67) is also available upon request.

This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control systems, or air traffic control systems.

GeneSiC disclaims all and any warranty and liability arising out of use or application of any product. No license, express or implied to any intellectual property rights is granted by this document.

Related Links

SPICE Models:	https://www.genesicsemi.com/sic-schottky-mps/GC2X50MPS06-227/GC2X50MPS06-227_SPICE.zip
PLECS Models:	https://www.genesicsemi.com/sic-schottky-mps/GC2X50MPS06-227/GC2X50MPS06-227_PLECS.zip
• CAD Models:	https://www.genesicsemi.com/sic-schottky-mps/GC2X50MPS06-227/GC2X50MPS06-227_3D.zip
• Evaluation Boards:	: https://www.genesicsemi.com/technical-support
 Reliability: 	https://www.genesicsemi.com/reliability
 Compliance: 	https://www.genesicsemi.com/compliance
 Quality Manual: 	https://www.genesicsemi.com/quality

www.genesicsemi.com/sic-schottky-mps/

Apr. 20 Rev 1.4 Copyright© 2020 GeneSiC Semiconductor Inc. All Rights Reserved. The information in this document is subject to change without notice. Published by GeneSiC Semiconductor, Inc. 43670 Trade Center Place Suite 155, Dulles, VA 20166; USA Page 7 of 7