

Twenty-Five Years Of Quality Through Innovation

J/SST174 SERIES

SINGLE P-CHANNEL JFET SWITCH

FEATURES						
Replacement For SILICONIX J/SST174 SERIES						
LOW ON RESISTANCE	$r_{DS(on)} \le 85\Omega$					
LOW GATE OPERATING CURRENT	$I_{D(off)} = 10pA$					
ABSOLUTE MAXIMUM RATINGS ¹						
@ 25 °C (unless otherwise stated)	@ 25 °C (unless otherwise stated)					
Maximum Temperatures						
Storage Temperature	-55 to 150°C					
Junction Operating Temperature	-55 to 135°C					
Maximum Power Dissipation						
Continuous Power Dissipation ³	350mW					
Maximum Currents						
Gate Current	$I_G = -50 \text{mA}$					
Maximum Voltages						
Gate to Drain Voltage	$V_{GDS} = 30V$					
Gate to Source Voltage	$V_{GSS} = 30V$					

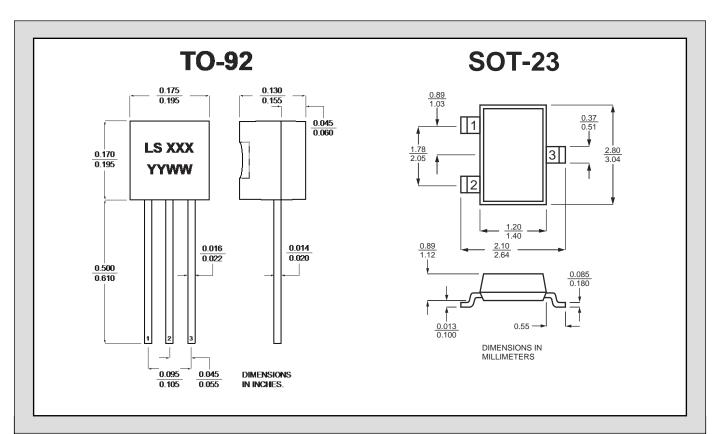
COMMON ELECTRICAL CHARACTERISTICS @ 25 °C (unless otherwise stated)

SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
BV _{GSS}	Gate to Source Breakdown Voltage	30			V	$I_G = 1\mu A$, $V_{DS} = 0V$
$V_{GS(F)}$	Gate to Source Forward Voltage		-0.7		V	$I_G = -1 \text{mA}, V_{DS} = 0 \text{V}$
I _{GSS}	Gate Reverse Current		0.01	1		$V_{GS} = 20V$, $V_{DS} = 0V$
I _G	Gate Operating Current		0.01		nA	$V_{DG} = -15V, I_{D} = -1mA$
I _{D(off)}	Drain Cutoff Current		-0.01	-1		$V_{DS} = -15V, V_{GS} = 10V$

SPECIFIC ELECTRICAL CHARACTERISTICS @ 25 °C (unless otherwise stated)

SYMBOL	CHARACTERISTIC	J/SST174		J/SST175		J/SST176		J/SST177		UNITS	CONDITIONS
STIVIBUL	CHARACTERISTIC	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	CONDITIONS
V _{GS(off)}	Gate to Source Cutoff Voltage	5	10	3	6	1	4	0.8	2.25	V	$V_{DS} = -15V, I_{D} = -10nA$
I _{DSS}	Drain to Source Saturation Current	-20	-195	-7	-90	-2	-55	-1.5	-30	mA	$V_{DS} = -15V, V_{GS} = 0V$
r _{DS(on)}	Drain to Source On Resistance		85		125		250		300	Ω	$V_{GS} = 0V, V_{DS} = -0.1V$

SWITCHING CHARACTERISTICS


SYMBOL	CHARACTERISTIC	TYP	UNITS	CONDITIONS		
t _{d(on)}	Turn On Time	10		$V_{GS(L)} = 0V$		
t _r	Turn On Rise Time	15		$V_{GS(H)} = 10V$ See Switching		
t _{d(off)}	Turn Off Time	10	ns			
t _f	Turn Off Fall Time	20		Circuit		

SWITCHING CIRCUIT PARAMETERS

	J/SST174	J/SST175	J/SST176	J/SST177
V_{DD}	-10V	-6V	-6V	-6V
V_{GG}	20V	12V	8V	5V
R_L	560Ω	750Ω	1800Ω	5600Ω
R_{G}	100Ω	220Ω	390Ω	390Ω
I _{D(on)}	-15mA	-7mA	-3mA	-1mA

SWITCHING CIRCUIT

2. Pulsed test: P_W ≤ 300µS Duty Cycle: 3%

Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.

3. Derate 2.8mW/°C above 25 °C.

Linear Integrated Systems (LIS) is a 25-year-old, third-generation precision semiconductor company providing high-quality discrete components. Expertise brought to LIS is based on processes and products developed at Amelco, Union Carbide, Intersil and Micro Power Systems by company President John H. Hall. Hall, a protégé of Silicon Valley legend Dr. Jean Hoerni, was the director of IC Development at Union Carbide, co-founder and vice president of R&D at Intersil, and founder/president of Micro Power Systems.