LINEAR SYSTEMS

Twenty-Five Years Of Quality Through Innovation

FEATURES					
REPLACEMENT FOR LF5301, PF5301					
HIGH INPUT INPEDANCE	I _G = 0.100 pA				
HIGH GAIN	g _{fs} = 70 μS				
ABSOLUTE MAXIMUM RATINGS ¹					
@ 25 °C (unless otherwise stated), TA=25°C					
Maximum Temperatures					
Storage Temperature (TO-72)	-55 to 175°C				
Storage Temperature (TO-92)	-55 to 150°C				
Maximum Power Dissipation ²					
Continuous Power Dissipation), TA=25°C	300mW				
Maximum Currents					
Gate Current	50mA				
Maximum Voltages					
Gate to Drain	-30V				
Gate to Source	-30V				

LS5301, PF5301

VERY HIGH INPUT IMPEDANCE N-CHANNEL JFET

COMMON ELECTRICAL CHARACTERISTICS @ 25 °C (unless otherwise stated)

SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNIT	CONDITIONS
BV _{GSS}	Gate to Source Breakdown Voltage	-30			V	$V_{DS} = 0V, I_D = -1\mu A$
V _{GS(off)}	Gate to Source Cutoff Voltage	-0.6		-3.0	v	$V_{DS} = 10V, I_D = 1nA$
I _{GSS}	Gate Leakage Current			-1	n A	$V_{DS} = 0V, V_{GS} = -15V$
l _G	Gate Operating Current		-0.04		рА	$V_{DG} = 6V, I_D = 5\mu A$
I _{DSS}	Drain to Source Saturation Current	30		500	μA	$V_{DS} = 10V, V_{GS} = 0V$
g fs	Forward Transconductance	70		300	μS	$V_{DS} = 10V, V_{GS} = 0V, f = 1kHz$
C _{iss}	Input Capacitance			3	۶E	1/2 = -101/1/2 = -01/1 = -00/1 = -00
C _{rss}	Reverse Transfer Capacitance			1.5	ρг	$v_{\rm DS} = 10v$, $v_{\rm GS} = 0v$; $I = 100$
en	Equivalent Noise Voltage		45	150	nV/√Hz	$V_{DG} = 10V, I_D = 50\mu A, f = 100Hz$

NOTES

- 1. Absolute maximum ratings are limiting values above which serviceability may be impaired.
- 2. Derate PF series 2.8mW/° C when TA>25° C. Derate LS series 2.0mW°C when TA>25° C
- 3. All MIN/TYP/MAX limits are absolute numbers. Negative signs indicated electrical polarity only.

Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.

Linear Integrated Systems (LIS) is a 25-year-old, third-generation precision semiconductor company providing high-quality discrete components. Expertise brought to LIS is based on processes and products developed at Amelco, Union Carbide, Intersil and Micro Power Systems by company President John H. Hall. Hall, a protégé of Silicon Valley legend Dr. Jean Hoerni, was the director of IC Development at Union Carbide, co-founder and vice president of R&D at Intersil, and founder/president of Micro Power Systems.

Linear Integrated Systems