

Twenty-Five Years Of Quality Through Innovation

2N/PN/SST4391 SERIES

SINGLE N-CHANNEL JFET SWITCH

FEATURES								
Replacement for Siliconix 2N/PN/SST4391, 4	292, & 4393							
LOW ON RESISTANCE	$r_{DS(on)} \le 30\Omega$							
FAST SWITCHING	t _{ON} ≤ 15ns							
ABSOLUTE MAXIMUM RATINGS ¹								
@ 25 °C (unless otherwise stated)								
Maximum Temperatures								
Storage Temperature (2N)	-65 to 200°C							
Storage Temperature (PN/SST)	-55 to 150°C							
Junction Operating Temperature (2N)	-55 to 200°C							
Junction Operating Temperature (PN/SST)	-55 to 150°C							
Maximum Power Dissipation	Maximum Power Dissipation							
Continuous Power Dissipation (2N)@Tc=25°C	1800mW ³							
Continuous Power Dissipation (PN/SST)	350mW ⁴							
Maximum Currents								
Gate Current	50mA							
Maximum Voltages								
Gate to Drain or Source (2N/PN)	-40V							

STATIC ELECTRICAL CHARACTERISTICS @25 °C (unless otherwise stated)

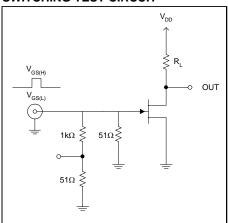
CVM	CHARACTERISTIC		TVD	43	91	43	92	43	93	LINUT	CONDITIONS
SYM.	CHARACTERISTIC		TYP	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	CONDITIONS
BV _{GSS}	Gate to Source Breakdown Voltage	2N/PN/SST		-40		-40		-40			$I_{G} = -1\mu A, V_{DS} = 0V$
V	Gate to Source	2N/PN		-4	-10	-2	-5	-0.5	-3		$V_{DS} = 20V, I_{D} = 1nA$
$V_{GS(off)}$	Cutoff Voltage	SST		-4	-10	-2	-5	-0.5	-3	V	$V_{DS} = 15V, I_D = 10nA$
$V_{\text{GS}(F)}$	Gate to Source Forward Voltage		0.7		1		1		1	V	$I_G = 1mA$, $V_{DS} = 0V$
	Drain to Source On Voltage		0.25						0.4		$V_{GS} = 0V$, $I_D = 3mA$
$V_{DS(on)}$			0.3				0.4				$V_{GS} = 0V$, $I_D = 6mA$
			0.35		0.4						$V_{GS} = 0V$, $I_D = 12mA$
		2N		50	165	25	150	5	125		
I _{DSS}	Drain to Source Saturation Current ²	PN		50	165	25	150	5	125	mΑ	$V_{DS} = 20V, V_{GS} = 0V$
	Saturation Current	SST		50		25		5			
	I _{GSS} Gate Leakage Current	2N/SST	-5		-100		-100		-100		.,
IGSS		PN	-5		-1000		-1000		-1000	рΑ	$V_{GS} = -20V, V_{DS} = 0V$
I _G	Gate Operating Current		-5								$V_{DG} = 15V, I_D = 10mA$

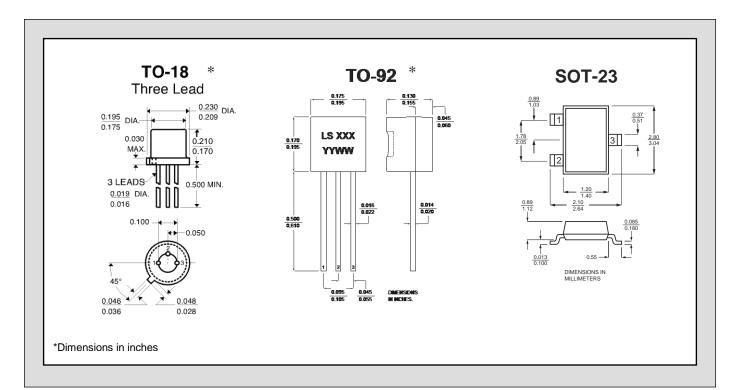
STATIC ELECTRICAL CHARACTERISTICS CONT. @25 °C (unless otherwise stated)

SYM.	CHARACTERISTIC		CHADACTEDISTIC		TYP	4391		4392		4393		UNIT	CONDITIONS
STIVI.			IIF	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	CONDITIONS		
			5						100		$V_{DS} = 20V, V_{GS} = -5V$		
	D(off) Drain Cutoff Current	2N	5				100				$V_{DS} = 20V, V_{GS} = -7V$		
			5		100						$V_{DS} = 20V, V_{GS} = -12V$		
$I_{D(off)}$			5						1000	pА	$V_{DS} = 20V, V_{GS} = -5V$		
		PN	5				1000				$V_{DS} = 20V, V_{GS} = -7V$		
			5		1000						$V_{DS} = 20V, V_{GS} = -12V$		
		SST	5		100		100		100		$V_{DS} = 10V, V_{GS} = -12V$		
r _{DS(on)}	Drain to Source On Resis	stance			30		60		100	Ω	$V_{GS} = 0V$, $I_D = 1mA$		

DYNAMIC ELECTRICAL CHARACTERISTICS @25 °C (unless otherwise stated)

0.414				43	91	43	92	43	93		
SYM.	M. CHARACTERISTIC		TYP	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	CONDITIONS
g fs	Forward Transconductan	ce	6							mS	$V_{DS} = 20V, I_{D} = 1mA$
gos	Output Conductance		25							μS	f = 1 kHz
r _{ds(on)}	Drain to Source On Resis	stance			30		60		100	Ω	$V_{GS} = 0V$, $I_D = 1mA$
		2N	12		14		14		14		.,
C_{iss}	Input Capacitance	PN	12		16		16		16		$V_{DS} = 20V, V_{GS} = 0V$ f = 1MHz
		SST	13								7 - 1101112
		2N	3.3						3.5		$V_{DS} = 0V$, $V_{GS} = -5V$ f = 1MHz
		PN	3.5						5		
		SST	3.6								
	,	2N	3.2				3.5			pF	
C_{rss}	Reverse Transfer Capacitance	PN	3.4				5			$V_{DS} = 0V, V_{GS} = f = 1MHz$	$V_{DS} = 0V, V_{GS} = -7V$ f = 1MHz
	Capacitario	SST	3.5								7 - 1141112
		2N	2.8		3.5						$V_{DS} = 0V, V_{GS} = -12V$ f = 1MHz
		PN	3.0		5						
		SST	3.1							1	
e _n	Equivalent Input Noise Voltage		3							nV/√Hz	$V_{DS} = 10V$, $I_D = 10mA$ f = 1kHz


SWITCHING ELECTRICAL CHARACTERISTICS @25 °C (unless otherwise stated)


CVM	CHARACTERISTIC		TYP	4391		4392		4393		LINUT	CONDITIONS
SYM.	CHARACTERISTIC		ITP	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	CONDITIONS
		2N/PN	2		15		15		15		
t _{d(on)}	Turn On Time	SST	2								
	Turn On Time	2N/PN	2		5		5		5		V 40V V 0V
t _r		SST	2								
		2N/PN	6		20		35		50	ns	$V_{DD} = 10V, V_{GS(H)} = 0V$
t _{d(off)}	Turn Off Time	SST	6								
4	Turn Off Time	2N/PN	13		15		20		30		
t _f		SST	13								

SWITCHING CIRCUIT CHARACTERISTICS

SYM.	4391	4392	4393
$V_{GS(L)}$	-12V	-7V	-5V
R_L	800Ω	1600Ω	3200Ω
I _{D(on)}	12mA	6mA	3mA

SWITCHING TEST CIRCUIT

NOTES

- 1. Absolute maximum ratings are limiting values above which serviceability may be impaired.
- 2. Pulse test: PW ≤ 300µs, Duty Cycle ≤ 3%
- 3. Derate 10mW/°C above 25°C
- 4. Derate 2.8mW/°C above 25°C

Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.

Linear Integrated Systems (LIS) is a 25-year-old, third-generation precision semiconductor company providing high-quality discrete components. Expertise brought to LIS is based on processes and products developed at Amelco, Union Carbide, Intersil and Micro Power Systems by company President John H. Hall. Hall, a protégé of Silicon Valley legend Dr. Jean Hoerni, was the director of IC Development at Union Carbide, co-founder and vice president of R&D at Intersil, and founder/president of Micro Power Systems.