${f MORNSUN}^{\scriptscriptstyle f B}$

G S-2W & H S-2W Series

2W.FIXED INPUT.6000V ISOLATED & UNREGULATED SINGLE/DUAL OUTPUT DC-DC CONVERTER

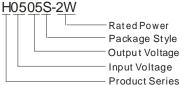
PRODUCT PROGRAM

RoHS (E

FEATURES

- High Efficiency up to 80%
- SIP Package
- 6KVDC Isolation
- Low Isolation Capacitance
- Temperature Range: -40°C ~ +85°C
- Continuous Short Circuit Protection
- No Heatsink Required
- No External Component Required
- Internal SMD Construction
- Industry Standard Pinout
- RoHS Compliance

APPLICATIONS


The G_S-2W & H_S-2W series are specially designed for applications where a group of polar power supplies are isolated from the input power supply in a distributed power supply system on a circuit board.

These products apply to:

- 1) Where the voltage of the input power supply is fixed (voltage variation ≤ ±10%);
- 2) Where isolation is necessary between input and output (isolation voltage ≤6000VDC);
- 3) Where the regulation of the output voltage and the output ripple noise are not demanding.

Such as: purely digital circuits, ordinary low frequency analog circuits, and IGBT power device driving circuits.

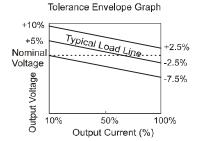
MODEL SELECTION

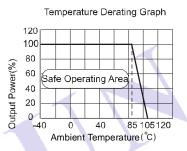
MORNSUN Science & Technology Co., Ltd.

Address: No. 5, Kehui St. 1, Kehui development center, Science Ave., Guangzhou Science City, Luogang district, Guangzhou, P.R. China.

Tel: 86-20-28203030 Fax:86-20-38601272

PRODUCT	PROGR	CAIVI					
	Input		Output				
Part Number	Voltage (VDC)		Voltage	Current (mA)		Efficiency (%, Typ.)	Certificate*
	Nominal	Range	(VDC)	(VDC) Max. Min.	(/5, 1)[1]		
G0505S-2W			±5	±200	±20	74	CE
G0509S-2W		4.5-5.5	±9	±111	±12	77	CE
G0512S-2W			±12	±83	±9	77	CE
G0515S-2W	5		±15	±67	±7	77	CE
H0505S-2W			5	400	40	74	CE
H0509S-2W			9	222	23	77	CE
H0512S-2W			12	167	17	77	CE
H0515S-2W			15	133	14	77	CE
G1205S-2W		10.8-13.2	±5	±200	±20	75	CE
G1209S-2W			±9	±111	±12	78	CE
G1212S-2W			±12	±83	±9	80	CE
G1215S-2W	12		±15	±67	±7	78	CE
H1205S-2W	12		5	400	40	75	CE
H1209S-2W	_>		9	222	23	78	CE
H1212S-2W			12	167	17	80	CE
H1215S-2W			15	133	14	78	CE
G2405S-2W			±5	±200	±20	75	CE
G2409S-2W		21.6-26.4	±9	±111	±12	77	CE
G2412S-2W			±12	±83	±9	80	CE
G2415S-2W			±15	±67	±7	79	CE
H2403S-2W	24		3.3	606	60	70	
H2405S-2W	3-2W		5	400	40	75	CE
H2409S-2W			9	222	23	77	CE
H2412S-2W			12	167	17	80	CE
H2415S-2W			15	133	14	79	CE
*CE Certificate:I	EN60601						


COMMON SPEC	IFICATIONS					
Item	Test Conditions	Min.	Тур.	Max.	Units	
Storage humidity				95	%	
Operating temperature		-40		85		
Storage temperature		-55		125	125 °C	
Lead temperature	1.5mm from case for 10 seconds			300		
Temp. rise at full load			15	30		
Short circuit protection	protection Cor		tinuous			
Cooling		Free air convection				
Case material		Plastic(UL94-V0)				
MTBF		3500			k hours	
Weight			4.3		g	


ISOLATION SPECIFICATIONS					
Item	Test Conditions	Min.	Тур.	Max.	Units
Isolation voltage	Tested for 1 minute and 1mA max	6000			VDC
Isolation resistance	Test at 500VDC	1000			МΩ
Isolation capacitance				10	pF

OUTPUT SPECIFICATIONS						
Item	Test conditions	Min.	Тур.	Max.	Units	
Output power		0.2		2	W	
Line regulation	For Vin change			±1.2		
	10% to 100%		10	15		
Load regulation	10% to 100%		8.3	15	%	
Load regulation	10% to 100%		6.8	15		
	10% to 100%		6.3	15		
Output voltage accuracy			See tolerance envelope graph			
Temperature drift	100% full load			±0.03	%/°C	
Ripple & Noise*	20MHz Bandw		150	250	mVp-p	
Cuitohing fraguancy	Full load,	(5V input)		45		kHz
Switching frequency	nominal input	(12V/24V input)		50		K TZ

^{*}Test ripple and noise by "parallel cable" method. See detailed operation instructions at Testing of Power Converter section, application notes. Note: Dual output models unbalanced load: ±5%

YPICAL CHARACTERISTICS

APPLICATION NOTE

1) Requirement on output load

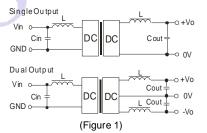
To ensure this module can operate efficiently and reliably, During operation, the minimum output load could not be less than 10% of the full load. If the actual output power is very small, please connect a resistor with proper resistance at the output end in parallel to increase the load; or use our company's products with a lower rated output power (G_S-1W & H_S-1W).

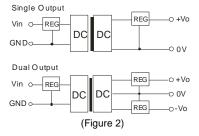
2) Recommended testing and application circuit

If you want to further decrease the input/output ripple, an "LC" filtering network may be connected to the input and output ends of the DC/DC converter, see (Figure 1).

It should also be noted that the inductance and the frequency of the "LC" filtering network should be staggered with the DC/DC frequency to avoid mutual interference. However, the capacitance of the output filter capacitor must be proper. If the capacitance is too big, a startup problem might arise. For every channel of output, provided the safe and reliable operation is ensured, the greatest capacitance of its filter capacitor sees (Table 1).

3) Output Voltage Regulation and Over-voltage Protection Circuit

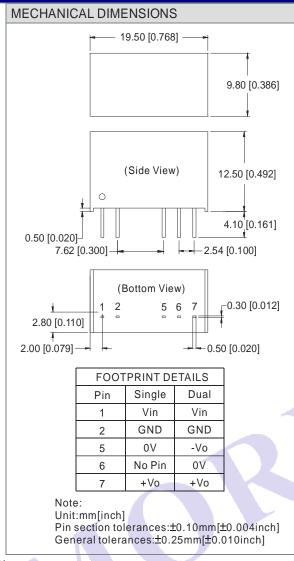

The simplest device for output voltage regulation, over-voltage and over-current protection is a linear voltage regulator with overheat protection that is connected to the input or output end in series (Figure 2).

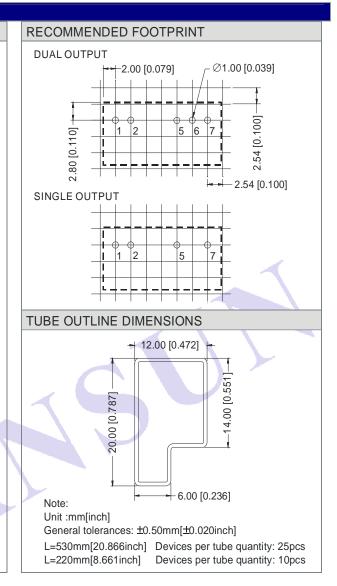

4) Overload Protection

Under normal operating conditions, the output circuit of these products has no protection against overload. The simplest method is to connect a self-recovery fuse in series at the input end or add a circuit breaker to the circuit.

5) No parallel connection or plug and play

RECOMMENDED CIRCUIT




EXTERNAL CAPACITOR TABLE (TABLE 1)

Vin	Cin	Single	Cout	Dual	Cout
(VDC) (µF)		Vout	(µF)	Vout	(µF)
		(VDC)		(VDC)	
5	10	5	10	±5	4.7
12	4.7	9	4.7	±9	2.2
24	2.2	12	2.2	±12	1
-	-	15	1	±15	0.47

It's not recommended to connect any external capacitor in the application field with less than 0.5 watt output.

OUTLINE DIMENSIONS & PIN CONNECTIONS

Note:

- 1. Operation under minimum load will not damage the converter; However, they may not meet all specification listed, and that will reduce the life of product.
- 2. All specifications measured at Ta=25°C, humidity<75%, nominal input voltage and rated output load unless otherwise specified.
- 3. Only typical models listed, other models may be different, please contact our technical person for more details.
- 4. In this datasheet, all the test methods of indications are based on corporate standards.