MORNSUN[®]

100W, wide input voltage, isolated & regulated single output DC-DC converter

FEATURES

- Wide input voltage range: 66-160V
- Efficiency up to 92%
- Low no-load power
- Isolation voltage 3000VDC
- Operating temperature range: -40°C ~+100°C
- Input under-voltage protection, output over-voltage, over-current, short-circuit, over-temperature protection
- International standard: 1/4 brick
- Meets railway standard EN50155

URF1D_QB-100W Series is a high performance product designed for the field of railway applications. The DC/DC converters feature 100W output power, no min. load requirement, wide input voltage of 66-160VDC, And allow the high base plate temperature(up to 100°C). The products also provide input under-voltage protection, output over-voltage protection, short-circuit protection, over-temperature protection, remote control and compensation, output voltage regulation functions. The series meet railway standard EN50155. And target railway system.

Selection Guide Input Voltage (VDC) Output Max. Capacitive Efficiency (%, Typ) Part No. Nominal Output Output Current Max.* @ Full Load Load(µF) Voltage(VDC) (mA)(Max./Min.) (Range) URF1D12QB-100W 12 8333/0 87/89 6000 URF1D12QB-100WH URF1D15QB-100W 110 170 15 6667/0 87/89 4700 URF1D15QB-100WH (66-160) URF1D24QB-100W 3000 24 4167/0 90/92 URF1D24QB-100WH

Note: *Exceeding the maximum input voltage may cause permanent damage.

Item	Operating Conditi	ons	Min.	Typ.	Max.	Unit	
Input Current (no-load / full load)	Nominal input	URF1D12QB-100W(H)		5/1021	15/1044	mA	
		URF1D15QB-100W(H)		5/1021	15/1044		
		URF1D24QB-100W(H)		5/988	15/1010		
Reflected Ripple Current	Nominal input			50			
Input Surge Voltage (1sec. max.)			-0.7		180		
Start-up Threshold Voltage					66	VDC	
Under-voltage Shutdown Voltage				58			
Start-up Time				25		mS	
Input Filter			Pi filter				
Hot Plug				Unav	ailable		
	Module switch on Module switch off Input current when switched off		Ctrl open circuit or connected to TTL high level				
Ctrl*			Ctrl connected to -Vin or low level (0-1.2VDC)-1.2VDC)	
				2		mA	

Output Specifications Max. Item **Operating Conditions** Min. Unit Typ. Nominal input, 10%-100% load ±2 ------**Output Voltage Accuracy** Nominal input,0%-10% load ±3 % ------Line Regulation Full load, the input voltage is from low to high ±0.3 ---___

MORNSUN®

MORNSUN GUANGZHOU SCIENCE & TECHNOLOGY CO., LTD.

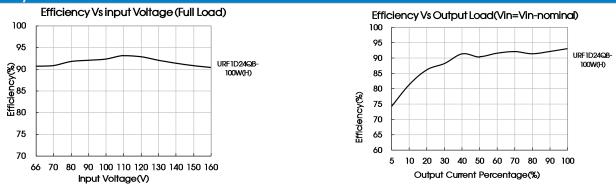
DC/DC Converter URF1D_QB-100W Series

Load Regulation	Nominal input,10%-100% load			±0.5	
Transient Recovery Time			300	500	μs
Transient Response Deviation	25% load step change		±3	±5	%
Temperature Drift Coefficient	Full load			±0.03	%/ ℃
Ripple & Noise *	20MHz bandwidth		100	300	mVp-p
Output voltage Regulated range(Trim)		-5		10	
Output voltage remote compensation(Sense)				5	%
Over-voltage Protection		110		140	%Vo
Over-current Protection	Input voltage range	110	130	180	%lo
Short-circuit Protection		Continuous			
Note: * The measuring method of ripple and	noise, please refer to Fig. 1 .				

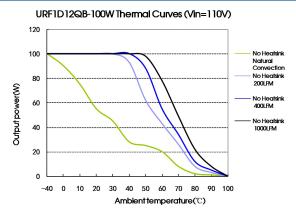
General	Specifications					
ltem		Operating Conditions	Min.	Тур.	Max.	Unit
Insulation Voltage	Input-output		3000			
	Input-case	With the test time of 1 minute and the leak current less than 1mA	1500			VDC
	Output-case	Currentiess indirittia	1500			
Insulation Resistance		Input-output, insulation voltage 500VDC	1000			MΩ
Isolation Capacitance		Input-output, 100KHz/0.1V		2200		pF
Switching Frequency		PFM mode		220		KHz
MTBF		MIL-HDBK-217F@25°C	500			K hours

Environme	ental Specificat	ions				
Item		Operating Conditions	Min.	Max.	Unit	
Base-Plate Temperature Range		Within the operating temperature curve	-40	100	°C	
Over-temperature Protection		Base- Plate Temperature		115	C	
		Natural convection	10.7			
	URF1D_QB-100W	200LFM convection	6.0			
	UKFID_QB-100W	400LFM convection	5.0			
Thermal Desisters as (D		1000LFM convection	4.0		°C A44	
Resistance(R th(B-A))	URF1D_QB-100WH	Natural convection	5.1		°C /W	
		200LFM convection	2.8			
		400LFM convection	2.2			
		1000LFM convection	1.8			
Storage Humic	dity	Non-condensing	5	95	%RH	
Storage Tempe	ərature		-55	125		
Lead Temperature		Welding spot is 1.5mm away from the casing, 10 seconds		300	°C	
Cooling Test			EN60068-2-1			
Dry Heat			EN60068-2-2			
Damp heat			EN60068-2-30			
Shock and Vib	oration Test			IEC/EN61373		

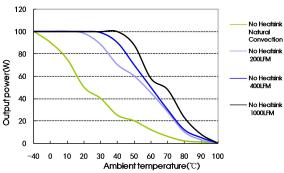
Physical Specifications				
Casing Material Black flame-retardant and heat-resistant plast		Black flame-retardant and heat-resistant plastic (UL94-V0)		
Dimension	Without Heatsink	60.80*39.20*12.70mm		
DIMENSION	With Heatsink	62.00*39.20*30.80mm		
Weight	Without Heatsink	46g (Typ.)		
weißill	With Heatsink	76g (Тур.)		
Cooling met	hod	Natural convection or Forced convection		

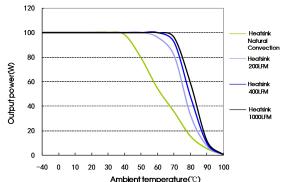

MORNSUN®

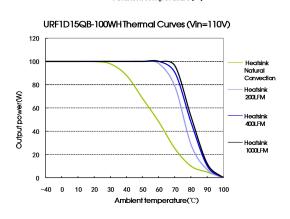
MORNSUN GUANGZHOU SCIENCE & TECHNOLOGY CO., LTD.

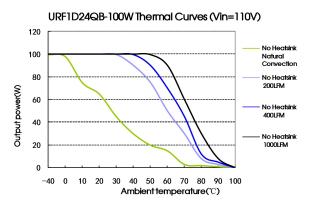

MORNSUN®

EMC	Specifications	3		
EMI	CE	CISPR22/EN55022 150KHz-30MHz Class B (see Fig. 2 -1 for recommended circuit)		
	RE CISPR22/EN55022 30MHz-1GHz Class B (see Fig. 2 -1for recommended circuit)			
	ESD	IEC/EN61000-4-2 GB/T17626.2 Contact ±6KV, Air ±8KV	perf.Criteria B	
	RS	IEC/EN61000-4-3 GB/T17626.3 10V/m	perf.Criteria A	
	CS	IEC/EN61000-4-6 GB/T17626.6 10Vr.m.s	perf.Criteria A	
	EFT	IEC/EN61000-4-4 GB/T17626.4 ±2KV(5KHz, 100KHz)(see Fig. 2-1for recommended circuit)	perf.Criteria B	
EMS	EMS	$\begin{array}{llllllllllllllllllllllllllllllllllll$	perf.Criteria B	
		EN50155 ±1.8KV (5/50μs 5Ω), (see Fig.2-1for recommended circuit)	perf.Criteria B	
	Immunities of short interruption	EN50155 100%-0%, 10ms (see Fig.2-1 for recommended circuit)	perf.Criteria B	

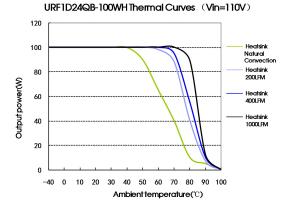

Efficiency Curves


Thermal Curves

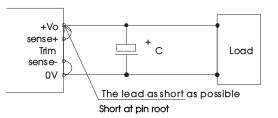




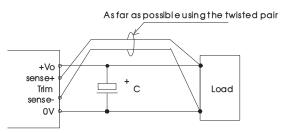
URF1D12QB-100WHThermal Curves (Vin=110V)



MORNSUN GUANGZHOU SCIENCE & TECHNOLOGY CO., LTD.



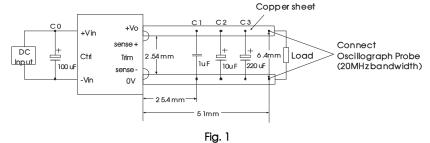
Sense of application and precautions


1. When not using remote sense

Notes:

- 1) When not using remote sense, make sure + Vo and Sense + are shorted, and that 0V and Sense- are shorted as well;
- 2) Keep the tracks between + Vo and Sense + and 0V and Sense- as short as possible. Avoid a looping track. If noise interferes the loop, the operation of the power module will become unstable.

2. When Remote Sense is used


Notes:

- 1. Using remote sense with long wires may cause output voltage to become unstable. Consult us if long sensing wiring is necessary.
- 2. Sense tracks or wires should be as short as possible. If using wires, it should not use twisted-pair or shielded wires.
- 3. Please use wide PCB tracks or a thick wires between the power supply module and the load, the line voltage drop should be kept less than 0.3V. Make sure the power supply module's output voltage remains within the specified range.
- 4. The impedance of wires may cause the output voltage oscillation or a greater ripple, please do adequate assessments before using.

Design Reference

1. Ripple & noise

All the URF1D_QB-100W series have been tested according to the following recommended test circuit before leaving the factory (see Fig. 1).

MORNSUN GUANGZHOU SCIENCE & TECHNOLOGY CO.,LTD.

2015.10.13-A/2 Page 4 of 8

2. Typical application

If not using our Mornsun's recommended circuit, please ensure an 100 µ F electrolytic capacitors in parallel with the input, which used to suppress the surge voltage come from the input terminal.

If it is required to further reduce input & output ripple, properly increase the input & output of additional capacitors Cin and Cout or select capacitors of low equivalent impedance, provided that the capacitance is no larger than the max. capacitive load of the product.

Capacitive Parameter	Cout(µF)	Cin(µF)
Output Voltage		
12VDC		
15VDC	220	100
24VDC		

3. EMC solution-module recommended circuit

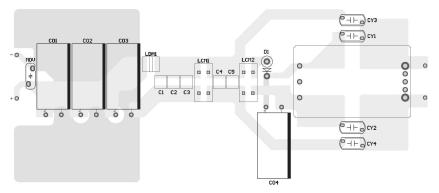


Fig. 2-2

S20K130(Varistor)				
100uF/400V(electrolytic caoacitor)				
10uH(Shielded inductor)				
2.2uF/250V				
SF306				
2200 pF /400VAC (Y safety capacitor)				
FL2D-30-222				
FL2D-30-472				

4. Thermal design

The maximum operating temperature of base-plate TB is 100 $^\circ$ C, as long as the user's thermal system keeps TB <100 $^\circ$ C, the converter can deliver its full rated power. A power derating curve can be calculated for any heatsink that is attached to the base-plate of the converter. It is onen airflow rate. This information is usually available from the heatsink vendor. The following formula can the be used to determine the maximly necessary to determine the thermal resistance, Rth(B-A), of the chosen heatsink between the base-plate and the ambient air for a givum power the converter can dissipate for a given thermal condition if its base-plate is to be no higher than 100 °C.

$$P_{disc}^{\text{max}} = \frac{100^{\circ}\text{C} - T_{\text{A}}}{T_{\text{A}}}$$

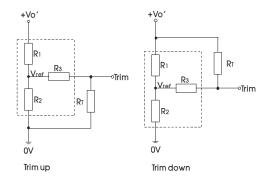
$$Rth (B - A)$$

(TA is ambient temperature, Rth(B-A) is thermal resistance of base-plate,

MORNSUN GUANGZHOU SCIENCE & TECHNOLOGY CO.,LTD.

2015.10.13-A/2 Page 5 of 8

DC/DC Converter URF1D_QB-100W Series



The maximum load operating power of power supply module at a certain ambient temperature can be calculated by the power dissipation, Formula is as follows:

$$Po_{\max} = \frac{P_{diss}^{\max}}{(\frac{1}{\eta} - 1)}$$
(η is converter efficiency)

Therefore, customers can according to the actual application to choose the right heatsink.

5. Application of Trim and calculation of Trim resistance

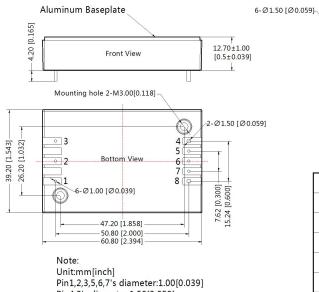
Calculation formula of Trim resistance:

up: Rī	$= \frac{aR_2}{R_2 - a} - R_3$	$\frac{aR_2}{R_2-a} -R_3 \qquad a = \frac{Vref}{Vo'-Vref} R_1$	
down: RT	R1-a	••	<u>-Vref</u> ·R2 ef
-	table	ə 1	
Vo			
	12(VDC)	15(VDC)	24(VDC)
Parameter			
R1(KΩ)	11	14.49	24.87
R2(K Ω)	2.87	2.87	2.87
R3(K Ω)	15	15	20
Vref(V)	2.5	2.5	2.5

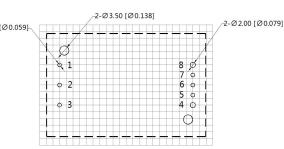
Note:

Value for R1, R2, R3, and V_{ref} refer to the above table 1. R₁: Resistance of Trim. a: User-defined parameter, no actual meanings. Vo': The trim up/down voltage.

- 6. It is not allowed to connect modules output in parallel to enlarge the power
- 7. For more information please find the application notes on www.mornsun-power.com

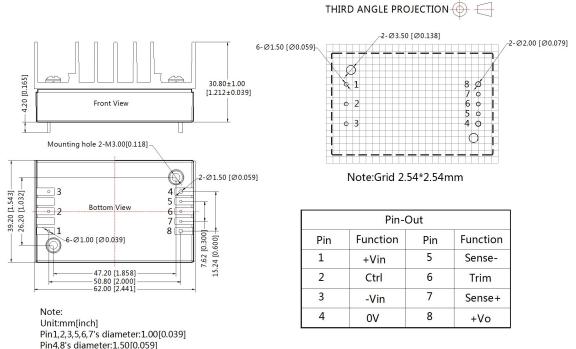

MORNSUN GUANGZHOU SCIENCE & TECHNOLOGY CO., LTD.

DC/DC Converter URF1D_QB-100W Series


MORNSUN®

Dimensions and Recommended Layout (without heatsink)

THIRD ANGLE PROJECTION


Pin1,2,3,5,6,7's diameter:1.00[0.039] Pin4,8's diameter:1.50[0.059] Pin diameter tolerances:±0.10[±0.004] General tolerances:±0.50[±0.020] Mounting hole screwing torque: Max 0.4 N·m

Note:Grid 2.54*2.54mm

Pin-Out					
Pin	Function	Pin	Function		
1	+Vin	5	Sense-		
2	Ctrl	6	Trim		
3	-Vin	7	Sense+		
4	0V	8	+Vo		

Dimensions and Recommended Layout(with heatsink)

Pin diameter tolerances:±0.10[±0.004] General tolerances:±0.50[±0.020] Mounting hole screwing torque: Max 0.4 N·m

MORNSUN GUANGZHOU SCIENCE & TECHNOLOGY CO., LTD.

2015.10.13-A/2

Page 7 of 8

Note

- 1. Packing Information please refer to 'Product Packing Information'. Packing bag number: 58010113(without heatsink), 58220017(with heatsink):
- 2. Recommended used in more than 5% load, if the load is lower than 5%, then the ripple index of the product may exceed the specification, but does not affect the reliability of the product;
- 3. The max capacitive load should be tested within the input voltage range and under full load conditions;
- 4. If the customer tests EMC, suggest to take our recommended circuit. If the customer needs to meet the performance aspects of the surge, and don't take our recommended circuit, please make sure the surge residual voltage is less than 180V, to ensure the reliability of the product;
- 5. Recommends that customers plus silicone film or thermal grease between the module and the heatsink, in order to ensure good heat dissipation:
- 6. Unless otherwise specified, data in this datasheet should be tested under the conditions of Ta=25°C, humidity<75% when inputting nominal voltage and outputting rated load;
- 7. All index testing methods in this datasheet are based on our Company's corporate standards;
- 8. The performance indexes of the product models listed in this datasheet are as above, but some indexes of non-standard model products will exceed the above-mentioned requirements, and please directly contact our technicians for specific information;
- 9. We can provide product customization service and match filter module;
- 10.Specifications of this product are subject to chang es without prior notice.

Mornsun Guangzhou Science & Technology Co., Ltd.

Address: No. 5, Kehui St. 1, Kehui Development Center, Science Ave., Guangzhou Science City, Luogang District, Guangzhou, P. R. China Tel: 86-20-38601850-8801 Fax: 86-20-38601272 E-mail: info@mornsun.cn

MORNSUN®

MORNSUN GUANGZHOU SCIENCE & TECHNOLOGY CO.,LTD.

Page 8 of 8