

NCS1 Series

Isolated 1W 4:1 Input Single Output DC/DC Converters

FEATURES

- UL 60950 recognition pending
- 4:1 Wide range voltage input
- Operating temperature range -40°C to 105°C with derating
- 1 kVDC Isolation
- 3.3V, 5V & 12V outputs
- No electrolytic capacitors
- Continuous short circuit protection

PRODUCT OVERVIEW

The NCS1 series of DC/DC converters offers a single output voltage from input voltage ranges of 4.5-18V and 9-36V. The NCS1 is housed in an industry standard package with a standard pinout.

Applications include telecommunications, battery powered systems, process control and distributed power systems.

SELECTION GUIDE											
Order Code	Input Voltage	Output Voltage	Output Current	Effici 5V or 24	ency IV Input.	, Ribbie and Mois		nd Noise	Isolation Capacitance	MTTF ¹	
	Nom.			Min.	Тур.	Min.	Тур.	Тур.	Max.	ဒိ	
	V	V	mA	%	%	%	%	mVp/p	mVp/p	pF	Hrs
NCS1S1203SC	12	3.3	303	73	77	71	75	24	70	24	
NCS1S1205SC	12	5	200	76	79	74	77	25	50	30	
NCS1S1212SC	12	12	83	75	78	75	79	40	120	35	
NCS1S2403SC	24	3.3	303	76	78.5	73	76	35	70	28	
NCS1S2405SC	24	5	200	79	82	77	80	27	50	42	
NCS1S2412SC	24	12	83	80	83	77	80	28	120	42	

Parameter	Conditions		Min.	Тур.	Max.	Units	
	12V input types	12V input types 24V input types			18	٧	
Voltage range	24V input types				36		
	NCS1S12XX	5V input voltage		0.26		А	
Innut ourrent		12V input voltage		0.1			
Input current	NCS1S24XX	12V input voltage		0.1			
	NG51524XX	24V input voltage		0.05			
Input ripple current	NCS1S12XX	NCS1S12XX		5	30	m A n	
	NCS1S24XX			5	15	mA p-	

OUTPUT CHARACTERISTICS							
Parameter	Conditions	Min.	Typ.	Max.	Units		
Rated power	All output types			1	W		
Minimal load to meet datas	sheet specification	10			%		
Voltage set point accuracy	All output types		±1	±2	%		
Line regulation	Low line to high line			±0.5	%		
Load regulation	All output types			0.5	%		
	Peak deviation (12.5-37.5% & 37.5-12.5% swing)			5	%V _{out}		
Transient response	Settling time (within 5% V _{out} Nom.)		2		ms		

ISOLATION CHARACTERISTICS								
Parameter	Conditions	Min.	Тур.	Max.	Units			
Isolation test voltage	Flash tested for 1 minute	1000			VDC			
Resistance	Viso = 1kVDC	1			GΩ			

GENERAL CHARACTERISTICS ¹								
Parameter	Conditions	Min.	Тур.	Max.	Units			
Switching frequency		100		400	kHz			
Control pin input	Module on, pin unconnected or open collector floati	ng						
Control pin input	Module off			8.0	V			

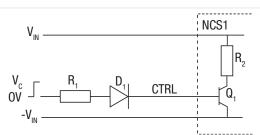
¹ Calculated using MIL-HDBK-217 FN2, parts stress method with nominal input voltage at full load.

All specifications typical at TA=25°C, nominal input voltage and rated output current unless otherwise specified.

TEMPERATURE CHARACTERISTICS								
Parameter	Conditions	Min.	Тур.	Max.	Units			
Operation		-40		105				
Storage		-50		125	°C			
Case temperature above ambient	100% Load, Nom V _{IN} , Still Air		15	22				

ABSOLUTE MAXIMUM RATINGS	
Short-circuit protection (for SELV input voltages)	Continuous
Control pin input voltage	18V Max
Lead temperature 1.0mm from case for 10 seconds (to JEDEC JESD22-B106 ISS C)	260°C
Input voltage, NCS1 12V input types	25V
Input voltage, NCS1 24V input types	40V

APPLICATION NOTES


Start-up times

Typical start up times for this series, with a typical input voltage rise time of 2.2μ s and output capacitance of 10μ F, are shown in the table below. The product series will start into a capacitance of 47μ F with an increased start time, however the maximum recommended output capacitance is 10μ F.

Part No.	Start-up times
raitinu.	ms
NCS1S1203SC	6
NCS1S1205SC	9
NCS1S1212SC	20
NCS1S2403SC	12
NCS1S2405SC	7
NCS1S2412SC	12

Control Pin

The NCS1 converters have a shutdown feature which enables the user to put the converter into a low power state. The control pin connects directly to the base of an internal transistor, and the switch off mechanism for the NCS1 works by forward biasing this NPN transistor. If the pin is left open (high impedance), the converter will be ON (there is no allowed low state for this pin), but once a control voltage is applied with sufficient drive current, the converter will be switched OFF. A suitable application circuit is shown below.

 D_1 (e.g. 1N4003) is required to provide high impedence when the signal is low. From the NCS1 specification, the drive current to operate this function is recommended to be 3mA, and hence the value of R, can be derived as follows:

$$R_{1} = \frac{V_{C} - V_{D} - V_{Q}}{I_{-}}$$

Assuming $V_c = 5V$, $V_p = 0.7V$ and $V_p = 1V$:

$$R_1 = \frac{5 - 0.7 - 1.0}{3 \times 10^{-3}} = 1100\Omega$$

TECHNICAL NOTES

ISOLATION VOLTAGE

'Hi Pot Test', 'Flash Tested', 'Withstand Voltage', 'Proof Voltage', 'Dielectric Withstand Voltage' & 'Isolation Test Voltage' are all terms that relate to the same thing, a test voltage, applied for a specifi ed time, across a component designed to provide electrical isolation, to verify the integrity of that isolation.

Murata Power Solutions NCS1 series of DC/DC converters are all 100% production tested at their stated isolation voltage. This is 1.0kVDC for 1 second.

A question commonly asked is, "What is the continuous voltage that can be applied across the part in normal operation?"

For a part holding no specific agency approvals, such as the NCS1 series, both input and output should normally be maintained within SELV limits i.e. less than 42.4V peak, or 60VDC. The isolation test voltage represents a measure of immunity to transient voltages and the part should never be used as an element of a safety isolation system. The part could be expected to function correctly with several hundred volts offset applied continuously across the isolation barrier; but then the circuitry on both sides of the barrier must be regarded as operating at an unsafe voltage and further isolation/insulation systems must form a barrier between these circuits and any user-accessible circuitry according to safety standard requirements.

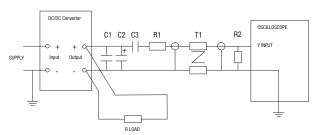
REPEATED HIGH-VOLTAGE ISOLATION TESTING

It is well known that repeated high-voltage isolation testing of a barrier component can actually degrade isolation capability, to a lesser or greater degree depending on materials, construction and environment. The NCS1 series has a toroid core, with no additional insulation between primary and secondary windings of enameled wire. While parts can be expected to withstand several times the stated test voltage, the isolation capability does depend on the wire insulation. Any material, including this enamel (typically polyurethane) is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage.

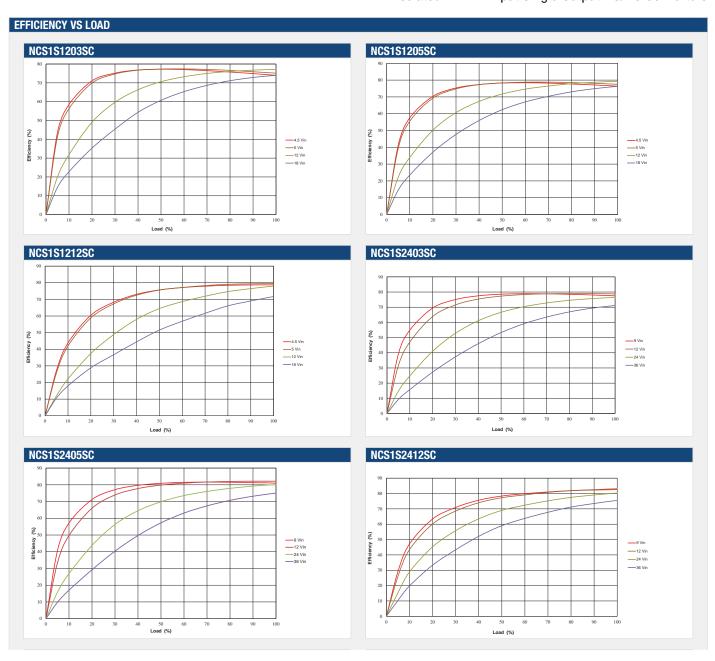
This consideration equally applies to agency recognized parts rated for better than functional isolation where the wire enamel insulation is always supplemented by a further insulation system of physical spacing or barriers.

ROHS COMPLIANCE INFORMATION

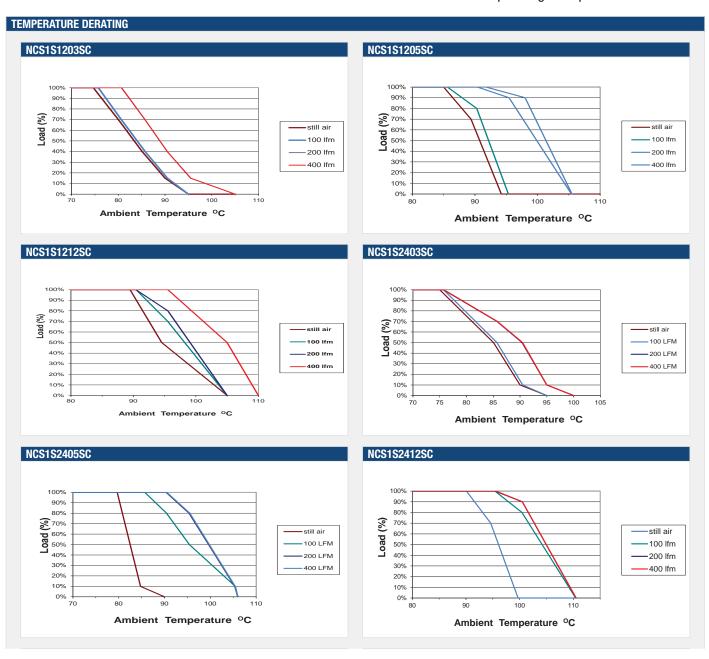
This series is compatible with RoHS soldering systems with a peak wave solder temperature of 260°C for 10 seconds. The pin termination finish on this product series is Tin Plate, Hot Dipped over Matte Tin with Nickel Preplate. The series is backward compatible with Sn/Pb soldering systems.

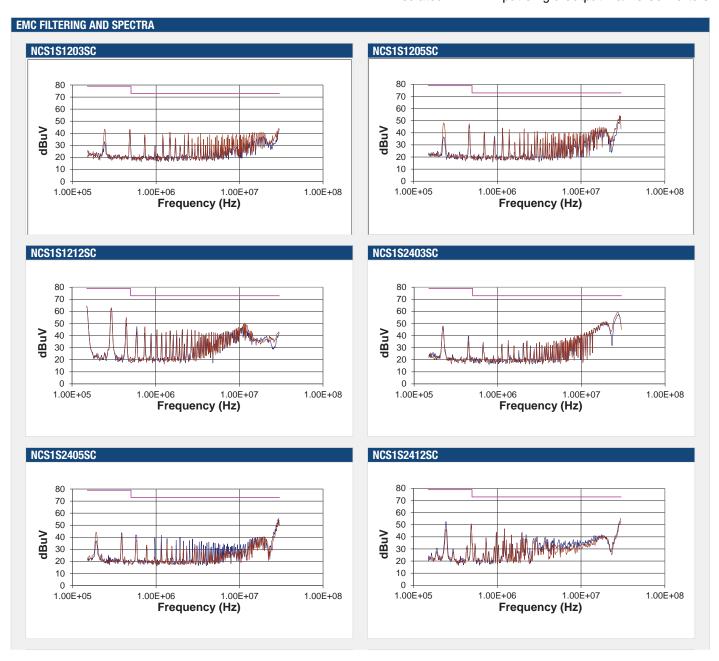

CHARACTERISATION TEST METHODS

Ripple & Noise Characterisation Method


Ripple and noise measurements are performed with the following test configuration.

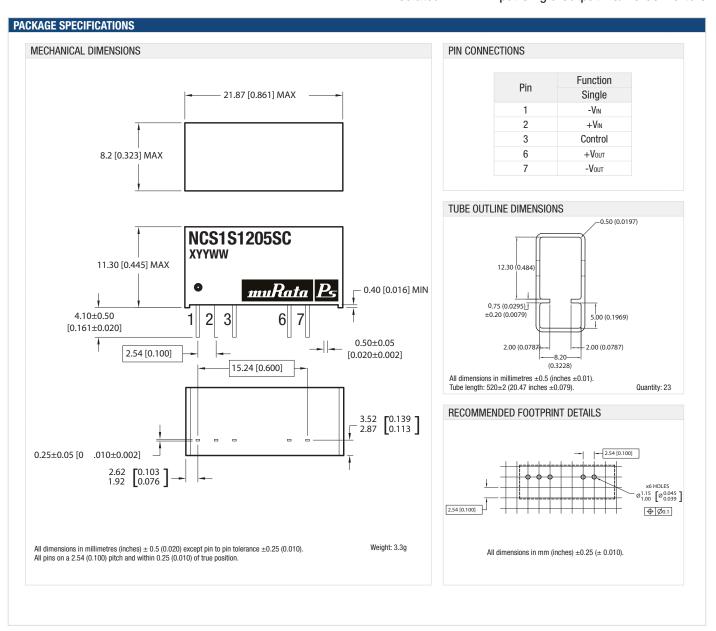
C1	1µF X7R multilayer ceramic capacitor, voltage rating to be a minimum of 3 times the output voltage of the DC/DC converter			
C2	$10\mu F$ tantalum capacitor, voltage rating to be a minimum of 1.5 times the output voltage of the DC/DC converter with an ESR of less than $100 \text{m}\Omega$ at 100kHz			
C3	100nF multilayer ceramic capacitor, general purpose			
R1	450Ω resistor, carbon film, ±1% tolerance			
R2	50Ω BNC termination			
T1	3T of the coax cable through a ferrite toroid			
RLOAD	Resistive load to the maximum power rating of the DC/DC converter. Connections should be made via twisted wires			
Measured values are multiplied by 10 to obtain the specified values.				


Differential Mode Noise Test Schematic


EMC FILTERING AND SPECTRA

FII TERING

The module includes a basic level of filtering, the following table shows the additional input capacitor and input inductor typically required to meet EN 55022 Curve A Quasi-Peak EMC limit, as shown in the following plots.


Part Number	Capacitor	Inductor	Common Mode Choke
NCS1S1203SC	330nF	500μH	
NCS1S1205SC	330nF	500μH	
NCS1S1212SC	2.2µF	2.2mH	
NCS1S2403SC	330nF	500μH	700µH
NCS1S2405SC	330nF	500μH	
NCS1S2412SC	330nF	500μH	

Murata Power Solutions, Inc.
11 Cabot Boulevard, Mansfield, MA 02048-1151 U.S.A. ISO 9001 and 14001 REGISTERED

This product is subject to the following <u>operating requirements</u> and the <u>Life and Safety Critical Application Sales Policy</u>:

Refer to: http://www.murata-ps.com/requirements/

Murata Power Solutions, Inc. makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Specifications are subject hange without notice.

© 2014 Murata Power Solutions, Inc.