

Http://www.modulelink.net

Optical network solutions provider

40Gb/s QSFP+ 30km Transceiver

PRODUCT FEATURES

- 4 CWDM lanes Mux/Demux design
- Up to 11.1Gbps Data rate per wavelength
- Up to 30km transmission on SMF
- Electrically hot-pluggable
- Digital Diagnostics Monitoring Interface
- Compliant with QSFP+ MSA with LC connector
- Case operating temperature range:0°C to 70°C
- Power dissipation < 3.5 W

APPLICATIONS

- 40G Ethernet
- Data Center and LAN

STANDARD

- Compliant to IEEE 802.3ba
- Compliant to SFF-8436
- RoHS Compliant.

Add: 3rd floor Block 2, Tianlong Science Industry Park, Kengzhi Town, Longgang Area, Shenzhen, China.Tel: 86-755-86101649Fax: 86-755-86101640E-mail:sales@modulelink.netWebsite: www.modulelink.net

Http://www.modulelink.net

Optical network solutions provider

General Description

MQSFP-40G-ER is designed to operate over single-mode fiber system using 4X10 CWDM channel in 1310 band and links up to 30km. The module converts 4 inputs channel of 10Gb/s electrical data to 4 CWDM optical signals, and multiplexes them into a single channel for 40Gb/s optical transmission. Reversely, on the receiver side, the module optically de-multiplexes a 40Gb/s input into 4 CWDM channels signals, and converts them to 4 channel output electrical data.

The central wavelengths of the 4 CWDM channels are 1271, 1291, 1311 and 1331 nm. It contains a duplex LC connector for the optical interface and a 38-pin connector for the electrical interface. Single-mode fiber (SMF) is applied in this module. This product converts the 4-channel 10Gb/s electrical input data into CWDM optical signals (light), by a 4-wavelength Distributed Feedback Laser (DFB) array. The 4 wavelengths are multiplexed into a single 40Gb/s data, propagating out of the transmitter module via the SMF. The receiver module accepts the 40Gb/s optical signals input, and de-multiplexes it into 4 CWDM 10Gb/s channels. Each wavelength light is collected by a discrete photo diode, and then outputted as electric data after amplified by a TIA.

The product is designed with form factor, optical/electrical connection and digital diagnostic interface according to the QSFP+ Multi-Source Agreement (MSA) and compliant to 40G QSFP+ LR4 of

IEEE 802.3ba.

I Absolute Maximum Ratings

Http://www.modulelink.net

Optical network solutions provider

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Storage Temperature	Ts	-40	-	85	°C	
Relative Humidity	RH	5	-	95	%	
Power Supply Voltage	VCC	-0.3	-	4	V	
Signal Input Voltage		Vcc-0.3	-	Vcc+0.3	V	

II Recommended Operating Conditions

			/dechechechechech	VIII:1010100, Alto		
Parameter	Symbol	Min.	Typ.	Max.	Unit	Note
Case Operating Temperature	Tcase	0	-	70	°C	Without air flow
Power Supply Voltage	VCC	3.13	3.3	3.47	V	
Power Supply Current	ICC	-		900	mA	
Data Rate	BR		10.3125		Gbps	Each channel
Transmission Distance	TD			30	km	
Coupled fiber	Single mode fiber					9/125um SMF

III Optical Characteristics

Parameter	Symbol	Min	Тур	Max	Unit	NOTE
1 al alleter	Symbol	IVIIII	тур	Мах	Umt	NOIL
Transmitter						
	λ 0	1264.5	1271	1277.5	nm	
Wavelength Assignment	λ1	1284.5	1291	1297.5	nm	
and the second sec	λ2	1304.5	1311	1317.5	nm	
\blacksquare	λ3	1324.5	1331	1337.5	nm	
Total Output. Power	Роит			8.3	dBm	
Average Launch Power Per lane		-7		2.3	dBm	

Add: 3rd floor Block 2, TianlongScience Industry Park, Kengzhi Town, Longgang Area, Shenzhen, China.Tel: 86-755-86101649Fax: 86-755-86101640E-mail:sales@modulelink.netWebsite: www.modulelink.net

Page 3 of 12

Http://www.modulelink.net

Optical network solutions provider

Spectral Width (-20dB)	σ			1	nm	
SMSR		30			dB	
Optical Extinction Ratio	ER	3.5			dB	
Average launch Power off per lane	Poff		4	-30	dBm	
RIN	RIN			-128	dB/Hz	
Output Eye Mask	Compliant with IEEE 802.3ba					
Receiver						
Rx Sensitivity per lane (OMA)	RSENS	\mathbb{R}		-11.5	dBm	1
Input Saturation Power (Overload)	Psat	3.3		and the second s	dBm	
Receiver Reflectance	Rr			-26	dB	

Notes:

1. Measured with a PRBS 2^{31} -1 test pattern, @10.325Gb/s, BER<10⁻¹².

IV. Electrical Characteristics

Parameter	Symbol	Min	Тур	Max	Unit	NOTE
Supply Voltage	Vcc	3.13	3.3	3.47	V	
Supply Current	Icc			900	mA	
Transmitter						
Input differential impedance	Rin		100		Ω	1
Differential data input swing	Vin,pp	180		1000	mV	
Transmit Disable Voltage	VD	Vcc-1.3		Vcc	V	
Transmit Enable Voltage	VEN	Vee		Vee+ 0.8	V	2
Transmit Disable Assert Time				10	us	
Receiver						
Differential data output swing	Vout,pp	300		850	mV	3
Data output rise time	tr	28			ps	4

Add: 3rd floor Block 2, TianlongScience Industry Park, Kengzhi Town, Longgang Area, Shenzhen, China.Tel: 86-755-86101649Fax: 86-755-86101640E-mail:sales@modulelink.netWebsite: www.modulelink.net

Page 4 of 12

Http://www.modulelink.net

Optical network solutions provider

Data output fall time	tf	28		ps	4
LOS Fault	VLOS fault	Vcc-1.3	VccHOST	V	5
LOS Normal	VLOS norm	Vee	Vee+0.8	V	5
Power Supply Rejection	PSR	100	A	mVpp	6

Notes:

- 1. Connected directly to TX data input pins. AC coupled thereafter.
- 2. Or open circuit.
- 3. Into 100 ohms differential termination.
- 4. 20 80 %.
- 5. Loss Of Signal is LVTTL. Logic 0 indicates normal operation; logic 1 indicates no signal detected.
- 6. Receiver sensitivity is compliant with power supply sinusoidal modulation of 20 Hz to 1.5 MHz up to specified value applied through the recommended power supply filtering network.

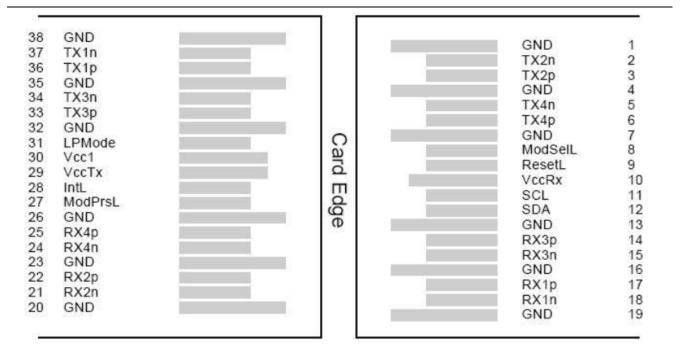

V. Pin Assignment

Figure 1---Pin out of Connector Block on Host Board

Http://www.modulelink.net

Optical network solutions provider

Top Side

Bottom Side

Pin	Symbol	Name/Description	NOTE
1	GND	Transmitter Ground (Common with Receiver Ground)	1
2	Tx2n	Transmitter Inverted Data Input	
3	Tx2p	Transmitter Non-Inverted Data output	
4	GND	Transmitter Ground (Common with Receiver Ground)	1
5	Tx4n	Transmitter Inverted Data Input	
6	Tx4p	Transmitter Non-Inverted Data output	
7	GND	Transmitter Ground (Common with Receiver Ground)	1
8	ModSelL	Module Select	
9	ResetL	Module Reset	
10	VccRx	3.3V Power Supply Receiver	2
11	SCL	2-Wire serial Interface Clock	
12	SDA	2-Wire serial Interface Data	
13	GND	Transmitter Ground (Common with Receiver Ground)	
14	Rx3p	Receiver Non-Inverted Data Output	
15	Rx3n	Receiver Inverted Data Output	
16	GND	Transmitter Ground (Common with Receiver Ground)	1
17	Rx1p	Receiver Non-Inverted Data Output	
18	Rx1n	Receiver Inverted Data Output	

Add: 3rd floor Block 2, TianlongScience Industry Park, Kengzhi Town, Longgang Area, Shenzhen, China.Tel: 86-755-86101649Fax: 86-755-86101640E-mail:sales@modulelink.netWebsite: www.modulelink.net

Http://www.modulelink.net

Optical network solutions provider

19	GND	Transmitter Ground (Common with Receiver Ground)	1		
20	GND	Transmitter Ground (Common with Receiver Ground)	1		
21	Rx2n	Receiver Inverted Data Output			
22	Rx2p	Receiver Non-Inverted Data Output			
23	GND	Transmitter Ground (Common with Receiver Ground)	1		
24	Rx4n	Receiver Inverted Data Output	1		
25	Rx4p	Receiver Non-Inverted Data Output			
26	GND	Transmitter Ground (Common with Receiver Ground)	1		
27	ModPrsl	Module Present			
28	IntL	Interrupt			
29	VccTx	3.3V power supply transmitter	2		
30	Vcc1	3.3V power supply			
31	LPMode	Low Power Mode			
32	GND	Transmitter Ground (Common with Receiver Ground)	1		
33	Tx3p	Transmitter Non-Inverted Data Input			
34	Tx3n	Transmitter Inverted Data Output			
35	GND	Transmitter Ground (Common with Receiver Ground)	1		
36	Tx1p	Transmitter Non-Inverted Data Input			
37	Tx1n	Transmitter Inverted Data Output			
38	GND	Transmitter Ground (Common with Receiver Ground)	1		

Notes:

1. GND is the symbol for signal and supply (power) common for QSFP+ modules. All are common within the QSFP+ module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal common ground plane.

2. VccRx, Vcc1 and VccTx are the receiving and transmission power suppliers and shall be applied concurrently. Recommended host board power supply filtering is shown below. Vcc Rx, Vcc1 and Vcc Tx may be internally connected within the QSFP+ transceiver module in any combination. The connector pins are each rated for a maximum current of 500mA.

Http://www.modulelink.net

Optical network solutions provider

VI. Digital Diagnostic Functions

MODULELINK MQSFP-40G-ER support the 2-wire serial communication protocol as defined in the QSFP+ MSA. which allows real-time access to the following operating parameters:

- Transceiver temperature
- Laser bias current
- Transmitted optical power
- Received optical power
- Transceiver supply voltage

It also provides a sophisticated system of alarm and warning flags, which may be used to alert end-users when particular operating parameters are outside of a factory-set normal range.

The operating and diagnostics information is monitored and reported by a Digital Diagnostics Transceiver Controller inside the transceiver, which is accessed through the 2-wire serial interface. When the serial protocol is activated, the serial clock signal (SCL pin) is generated by the host. The positive edge clocks data into the QSFP+ transceiver into those segments of its memory map that are not write-protected. The negative edge clocks data from the QSFP+ transceiver. The serial data signal (SDA pin) is bi-directional for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The memories are organized as a series of 8-bit data words that can be addressed individually or sequentially. The 2-wire serial interface provides sequential or random access to the 8 bit parameters, addressed from 00h to the maximum address of the memory.

This clause defines the Memory Map for QSFP+ transceiver used for serial ID, digital monitoring and certain control functions. The interface is mandatory for all QSFP+ devices. The memory map has been changed in order to accommodate 4 optical channels and limit the required memory space. The structure of the memory is shown in Figure 2 -QSFP+ Memory Map. The memory space is arranged into a lower, single page, address space of 128 bytes and multiple upper address space pages. This structure

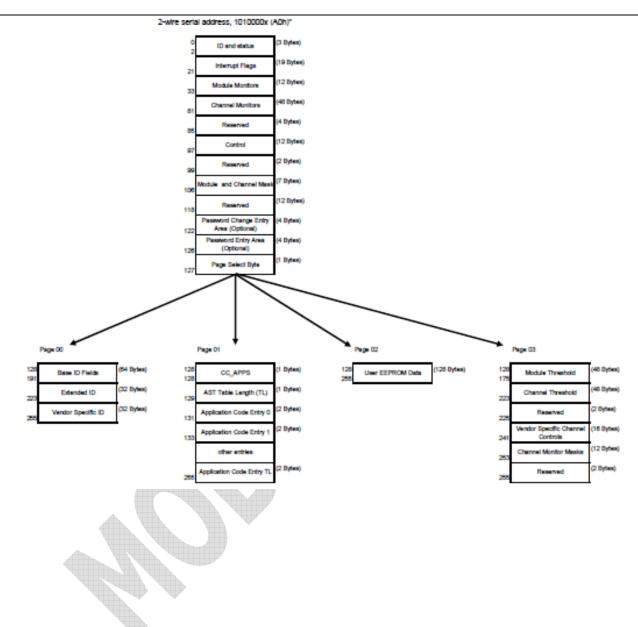
E-mail:sales@modulelink.net Website: www.modulelink.net

Http://www.modulelink.net

Optical network solutions provider

entries, e.g. serial ID information and threshold settings, are available with the Page Select function. The structure also provides address expansion by adding additional upper pages as needed. For example, in Figure 2 upper pages 01 and 02 are optional. Upper page 01 allows implementation of Application Select Table, and upper page 02 provides user read/write space. The lower page and upper pages 00 and 03 are always implemented. The interface address used is A0xh and is mainly used for time critical data like interrupt handling in order to enable a "one-time-read" for all data related to an interrupt situation. After an Interrupt, IntL, has been asserted, the host can read out the flag field to determine the effected channel and type of flag.

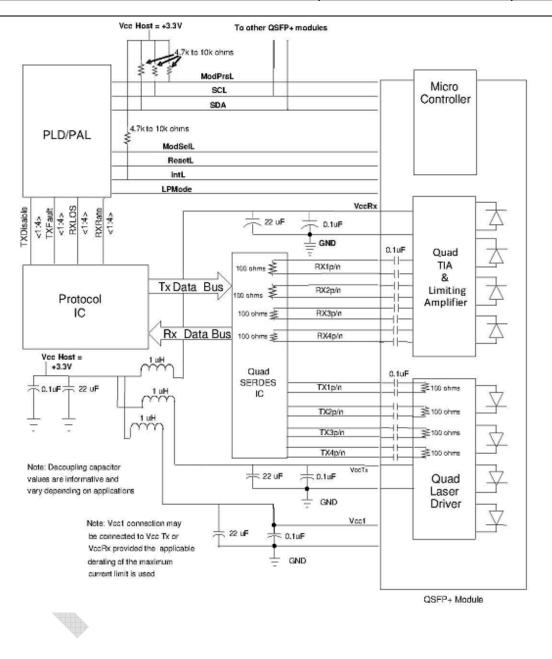
For more detailed information including memory map definitions, please see the QSFP+ MSA Specification.


Figure 2 –QSFP+ Memory Map

Add: 3rd floor Block 2, Tianlong Science Industry Park, Kengzhi Town, Longgang Area, Shenzhen, China.Tel: 86-755-86101649Fax: 86-755-86101640E-mail:sales@modulelink.netWebsite: www.modulelink.net

Http://www.modulelink.net

Optical network solutions provider


VII. Host - Transceiver Interface Block Diagram

Add: 3rd floor Block 2, Tianlong Science Industry Park, Kengzhi Town, Longgang Area, Shenzhen, China.Tel: 86-755-86101649Fax: 86-755-86101640E-mail:sales@modulelink.netWebsite: www.modulelink.net

Http://www.modulelink.net

Optical network solutions provider

Add: 3rd floor Block 2, Tianlong Science Industry Park, Kengzhi Town, Longgang Area, Shenzhen, China.Tel: 86-755-86101649Fax: 86-755-86101640E-mail:sales@modulelink.netWebsite: www.modulelink.net

Page 11 of 12

Http://www.modulelink.net

Optical network solutions provider

VIII. Outline Dimensions

Appendix A. Document Revision

Version No.	Date	Description
1.0	2016-2-16	Preliminary datasheet

Add: 3rd floor Block 2, TianlongScience Industry Park, Kengzhi Town, Longgang Area, Shenzhen, China.Tel: 86-755-86101649Fax: 86-755-86101640E-mail:sales@modulelink.netWebsite: www.modulelink.net