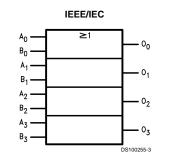
54AC86 Quad 2-Input Exclusive-OR Gate

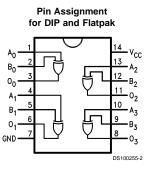
National Semiconductor

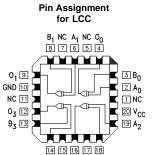
54AC86 Quad 2-Input Exclusive-OR Gate


General Description

The 'AC86 contains four, 2-input exclusive-OR gates.

Features


- I_{CC} reduced by 50%
- Outputs source/sink 24 mA
- Standard Military Drawing (SMD)
 - 'AC86: 5962-89550


Logic Symbol

Pin Names	Description
A ₀ -A ₃	Inputs
B ₀ -B ₃	Inputs
O ₀ -O ₃	Outputs

Connection Diagrams

 $\mathsf{A}_3 \ \mathsf{NC} \ \mathsf{O}_2 \ \mathsf{NC} \ \mathsf{B}_2$

DS100255-1

 $\mathsf{FACT^{rw}}$ is a trademark of Fairchild Semiconductor Corporation. $\mathsf{TRI-STATE^{\otimes}}$ is a registered trademark of National Semiconductor Corporation.

www.national.com

© 1998 National Semiconductor Corporation DS100255

Absolute Maximum Ratings (Note 1)

.

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Diode Current (IIK)	
$V_{1} = 0.5V$	–20 mA
$V_{I} = V_{CC} + 0.5V$	+20 mA
DC Input Voltage (V _I)	–0.5V to V _{CC} +0.5V
DC Output Diode Current (I _{OK})	
$V_{O} = -0.5V$	–20 mA
$V_{O} = V_{CC} + 0.5V$	+20 mA
DC Output Voltage (V _O)	–0.5V to V _{CC} +0.5V
DC Output Source or Sink Current (I _O)	±50 mA
DC V _{CC} or Ground Current	
Per Output Pin (I _{CC} or I _{GND})	±50 mA
Storage Temperature (T _{STG})	-65°C to +150°C
Junction Temperature (T _J)	
CDIP	175°C

Recommended Operating Conditions

Supply Voltage (V _{CC})	
'AC	2.0V to 6.0V
Input Voltage (V _I)	0V to V_{CC}
Output Voltage (V _O)	0V to V_{CC}
Operating Temperature (T _A)	
54AC	–55°C to +125°C
Minimum Input Edge Rate (ΔV/Δt)	
'AC Devices	
V_{IN} from 30% to 70% of V_{CC}	
V _{CC} @ 3.3V, 4.5V, 5.5V	125 mV/ns
Note 1: Absolute maximum ratings are those values	beyond which damage

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. National does not recommend operation of FACT[™] circuits outside databook specifications.

DC Characteristics for 'AC Family Devices

			54AC		
Symbol Parameter	V _{cc}	T _A =	Units	Conditions	
		(V)	-55°C to +125°C		
			Guaranteed Limits		
VIH	Minimum High Level	3.0	2.1		V _{OUT} = 0.1V
	Input Voltage	4.5	3.15	V	or $V_{CC} - 0.1V$
		5.5	3.85		
VIL	Maximum Low Level	3.0	0.9		V _{OUT} = 0.1V
	Input Voltage	4.5	1.35	V	or $V_{CC} - 0.1V$
		5.5	1.65		
V _{он}	Minimum High Level	3.0	2.9		Ι _{ΟUT} = -50 μΑ
	Output Voltage	4.5	4.4	V	
		5.5	5.4		
					(Note 2)
					$V_{IN} = V_{IL} \text{ or } V_{IH}$
		3.0	2.4		I _{OH} = -12 mA
		4.5	3.7	V	I _{OH} = -24 mA
		5.5	4.7		I _{OH} = -24 mA
V _{OL}	Maximum Low Level	3.0	0.1		Ι _{ΟUT} = 50 μΑ
	Output Voltage	4.5	0.1	V	
		5.5	0.1		
					(Note 2)
					$V_{IN} = V_{IL} \text{ or } V_{IH}$
		3.0	0.50		I _{OL} = 12 mA
		4.5	0.50	V	I _{OL} = 24 mA
		5.5	0.50		I _{OL} = 24 mA
I _{IN}	Maximum Input	5.5	±1.0	μA	$V_1 = V_{CC}, GND$
	Leakage Current				
l _{oz}	Maximum TRI-STATE®				V_{I} (OE) = V_{IL} , V_{IH}
					$V_{O} = V_{CC}, GND$
I _{OLD}	(Note 3) Minimum Dynamic	5.5	50	mA	V _{OLD} = 1.65V Max
I _{OHD}	Output Current	5.5	-50	mA	V _{OHD} = 3.85V Min

DC Characteristics for 'AC Family Devices (Continued)									
			54AC						
Symbol	Parameter	V _{cc}	T _A =	Units	Conditions				
		(V)	–55°C to +125°C						
			Guaranteed Limits]					
I _{cc}	Maximum Quiescent	5.5	40.0	μA	V _{IN} = V _{CC}				
	Supply Current				or GND				

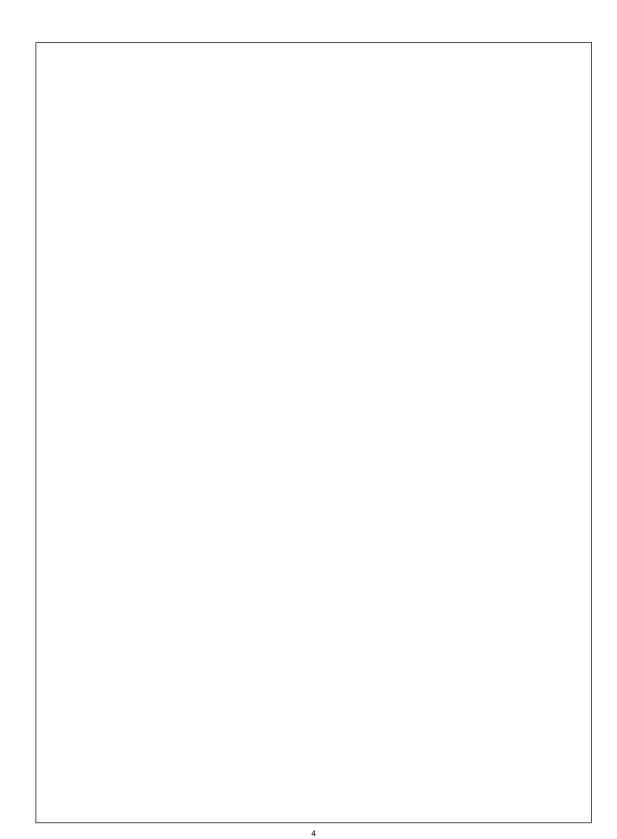
Note 2: All outputs loaded; thresholds on input associated with output under test.

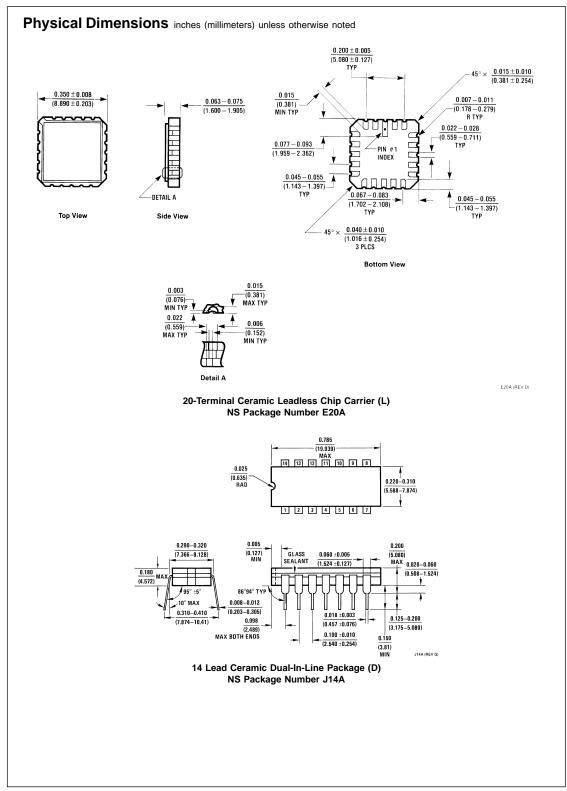
Note 3: Maximum test duration 20 ms, one output loaded at a time.

Note 4: I_{IN} and I_{CC} @ 3.0V are guaranteed to be less than or equal to the respective limit @ 5.5V V_{CC}.

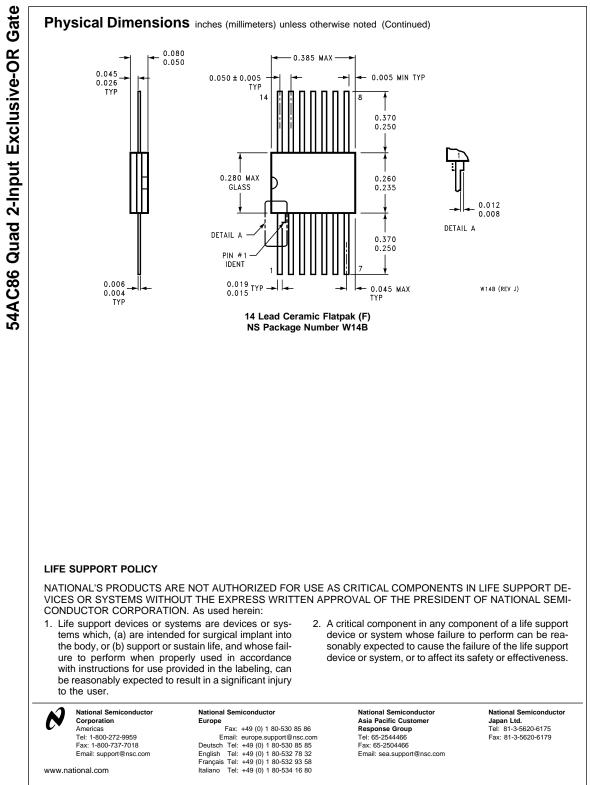
 I_{CC} for 54AC @ 25°C is identical to 74AC @ 25°C.

AC Electrical Characteristics


Symbol	Parameter	V _{CC} (V) (Note 5)	T _A = to +2	AC -55°C 125°C 50 pF	Units	Fig. No.
			Min	Max		
t _{PHL}	Propagation Delay	3.3	1.0	14.0	ns	
	Inputs to Outputs	5.0	1.0	10.0		
t _{PLH}	Propagation Delay	3.3	1.0	14.0	ns	
	Inputs to Outputs	5.0	1.0	10.0		


Note 5: Voltage Range 3.3V is 3.3V $\pm 0.3V$

Voltage Range 5.0V is 5.0V ±0.5V


Capacitance

Symbol	Parameter	Тур	Units	Conditions
CIN	Input Capacitance	4.5	pF	V _{CC} = Open
C _{PD}	Power Dissipation Capacitance	35	pF	$V_{\rm CC}$ = 5.0V

www.national.com

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

×	<u>Design</u>	Purchasing	<u>Quality</u>	<u>Company</u>	<u>Jobs</u>
Products > Military/Aero	<u>ospace</u> > Log	<u>ic</u> > <u>FACT AC</u>	> 54AC86)	
54AC86 Quad 2-input Ex	clusive-OR G	ate			

Contents

- General Description
- Features
- Datasheet
- Package Availability, Models, Samples & Pricing
- <u>Application Notes</u>

General Description

The 'AC86 contains four, 2-input exclusive-OR gates.

Features

- I_{CC} reduced by 50%
- Outputs source/sink 24 mA
- Standard Military Drawing (SMD) -'AC86: 5962-89550

Datasheet

Title	Size (in Kbytes)	Date	∑ View Online	X Download	Receive via Email
	112 Kbytes	24-Sep- 98	<u>View</u> <u>Online</u>	<u>Download</u>	<u>Receive via</u> <u>Email</u>

Please use <u>Adobe Acrobat</u> to view PDF file(s).

If you have trouble printing, see Printing Problems.

Package Availability, Models, Samples & Pricing

	Packa	ige		Models		Samples	Budgetary Pricing		St
Part Number	Туре	# pins	Status	SPICE	IBIS	& Electronic Orders	Quantity	\$US each	Pac Siz
5962-89550012A	LCC	20	Full production	N/A	N/A		50+	\$6.5000	tub of 5(
5962-8955001CA	Cerdip	14	Full production	N/A	N/A		50+	\$1.8000	tub of 25
5962-8955001DA	Cerpack	14	Full production	N/A	N/A		50+	\$5.0000	tub of 19
JM38510R75202BC	Cerdip	14	Full production	N/A	N/A		50+	\$68.0000	tub of 25
JM38510R75202BD	Cerpack	14	Full production	N/A	N/A		50+	\$69.0000	tub of 19
JM38510/75202B2	LCC	20	Full production	N/A	N/A		50+	\$9.0000	tub of 5(
JM38510R75202B2	LCC	20	Full production	N/A	N/A		50+	\$70.0000	tub of 5(
JM38510/75202BC	Cerdip	14	Full production	N/A	N/A		50+	\$7.0000	tub of 25
JM38510/75202BD	Cerpack	14	Full production	N/A	N/A		50+	\$9.0000	tub of 19

JM38510/75202S2	LCC	20	Full production	N/A	N/A	50+	\$170.0000	tub of 5(
JM38510R75202S2	LCC	20	Full production	N/A	N/A	50+	\$138.0000	tub of 5(
JM38510R75202SC	Cerdip	14	Full production	N/A	N/A	50+	\$138.0000	tub of 25
JM38510/75202SD	Cerpack	14	Full production	N/A	N/A	50+	\$170.0000	tub of 19
JM38510R75202SD	Cerpack	14	Full production	N/A	N/A	50+	\$138.0000	tub of 19
54AC86 MW8	wafe	r	Full production	N/A	N/A			N/.

Application Notes

Title	Size (in Kbytes)	Date	View Online	X Download	Receive via Email
AN-925: Radiation Design Test Data for Advanced CMOS Product		0	<u>View</u> <u>Online</u>	Download	<u>Receive via</u> <u>Email</u>

Please use <u>Adobe Acrobat</u> to view PDF file(s). If you have trouble printing, see <u>Printing Problems</u>.

[Information as of 28-Jul-2000]

 Quick Search
 Parametric Search
 System Diagrams
 Product Tree
 Home

 About Languages . About the Site . About "Cookies" National is QS 9000 Certified . Privacy/Security Copyright © National Semiconductor Corporation
 Preferences . Feedback