

Connection Diagrams

Truth Table
(each half)

Inputs					Outputs	
$\bar{S}_{\text {D }}$	$\bar{C}_{\text {D }}$	CP	J	$\overline{\mathrm{K}}$	Q	$\overline{\mathbf{Q}}$
L	H	X	X	X	H	L
H	L	X	X	X	L	H
L	L	X	X	X	H	H
H	H	\sim	L	L	L	H
H	H	\sim	H	L		
H	H	\sim	L	H	Q_{0}	\bar{Q}_{0}
H	H	\sim	H	H	H	L
H	H	L	X	X	Q_{0}	\bar{Q}_{0}

H = HIGH Voltage Level
L LOW Voltage Level
$\mathcal{F}=$ LOW-to-HIGH Transition
$\mathrm{X}=$ Immaterial
$\mathrm{Q}_{0}\left(\overline{\mathrm{Q}}_{0}\right)=$ Previous $\mathrm{Q}_{0}\left(\overline{\mathrm{Q}}_{0}\right)$ before LOW-to-HIGH Transition of Clock
Logic Diagram (one half shown)

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

DC Characteristics for 'AC Family Devices (Continued)

Symbol	Parameter	V_{cc} (V)	54AC	Units	Conditions
			$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		
			Guaranteed Limits		
I_{cc}	Maximum Quiescent Supply Current	5.5	40.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{cc}}$ or GND

Note 2: All outputs loaded; thresholds on input associated with output under test.
Note 3: Maximum test duration 2.0 ms , one output loaded at a time.
Note 4: $I_{\mathbb{N}}$ and $I_{C C} @ 3.0 \mathrm{~V}$ are guaranteed to be less than or equal to the respective limit $@ 5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$.
I_{CC} for $54 \mathrm{AC} @ 25^{\circ} \mathrm{C}$ is identical to $74 \mathrm{AC} @ 25^{\circ} \mathrm{C}$.

DC Characteristics for 'ACT Family Devices

Symbol	Parameter	V_{cc} (V)	54ACT	Units	Conditions
			$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		
			Guaranteed Limits		
V_{IH}	Minimum High Level Input Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$\overline{\mathrm{V}} \mathrm{IL}$	Maximum Low Level Input Voltage	$\begin{aligned} & \hline 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.8 \\ & \hline \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$\overline{\mathrm{V}} \mathrm{OH}$	Minimum High Level Output Voltage	$\begin{aligned} & \hline 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4.4 \\ & 5.4 \end{aligned}$	V	$\mathrm{I}_{\text {OUT }}=-50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.70 \\ & 4.70 \\ & \hline \end{aligned}$	V	(Note 5) $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \end{aligned}$
V_{OL}	Maximum Low Level Output Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	V	$\mathrm{l}_{\text {OUt }}=50 \mu \mathrm{~A}$
		$\begin{array}{r} 4.5 \\ 5.5 \\ \hline \end{array}$	$\begin{aligned} & 0.50 \\ & 0.50 \\ & \hline \end{aligned}$	V	(Note 5) $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \end{aligned}$
$\overline{I_{\text {IN }}}$	Maximum Input Leakage Current	5.5	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{cc}}$, GND
$\mathrm{I}_{\text {CCT }}$	Maximum $\mathrm{I}_{\mathrm{CC}} /$ Input	5.5	1.6	mA	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$
$\mathrm{I}_{\text {OLD }}$	(Note 6) Minimum Dynamic	5.5	50	mA	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max
$\mathrm{I}_{\text {OHD }}$	Output Current	5.5	-50	mA	$\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}$ Min
I_{cc}	Maximum Quiescent Supply Current	5.5	40.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND

Note 5: All outputs loaded; thresholds on input associated with output under test.
Note 6: Maximum test duration 2.0 ms , one output loaded at a time.
Note 7: ICC for 54 ACT @ $25^{\circ} \mathrm{C}$ is identical to $74 \mathrm{ACT} @ 25^{\circ} \mathrm{C}$.

AC Electrical Characteristics

Symbol	Parameter	V_{cc} (V) (Note 8)			Units	Fig. No.
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$			
			Min	Max		
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency	$\begin{array}{r} \hline 3.3 \\ 5.0 \\ \hline \end{array}$	$\begin{aligned} & 65 \\ & 95 \\ & \hline \end{aligned}$		MHz	
$t_{\text {PLH }}$	Propagation Delay $C P_{n}$ to Q_{n} or \bar{Q}_{n}	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 17.5 \\ & 12.0 \end{aligned}$	ns	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay $C P_{n}$ to Q_{n} or \bar{Q}_{n}	$\begin{aligned} & 3.3 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 13.5 \\ & 10.0 \\ & \hline \end{aligned}$	ns	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay $\overline{\mathrm{C}}_{\mathrm{Dn}}$ or $\overline{\mathrm{S}}_{\mathrm{Dn}}$ to Q_{n} or \bar{Q}_{n}	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{gathered} 13.0 \\ 9.5 \end{gathered}$	ns	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay $\overline{\mathrm{C}}_{\mathrm{Dn}}$ or $\overline{\mathrm{S}}_{\mathrm{Dn}}$ to Q_{n} or \bar{Q}_{n}	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 10.5 \end{aligned}$	ns	

Note 8: Voltage Range 3.3 is $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$
Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$

AC Operating Requirements

Symbol	Parameter	V_{cc} (V) (Note 9)	54AC	Units	Fig. No.
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ & \text { to }+125^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		
			Guaranteed Minimum		
t_{s}	Setup Time, HIGH or LOW J_{n} or \bar{K}_{n} to $C P_{n}$	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 5.5 \\ & \hline \end{aligned}$	ns	
$t_{\text {h }}$	Hold Time, HIGH or LOW J_{n} or \bar{K}_{n} to $C P_{n}$	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{gathered} 0 \\ 0.5 \end{gathered}$	ns	
t_{w}	Pulse Width $\overline{\mathrm{C}}_{\mathrm{Dn}}$ or $\overline{\mathrm{S}}_{\mathrm{Dn}}$ or CP_{n}	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 5.5 \end{aligned}$	ns	
$\mathrm{t}_{\text {ece }}$	Recovery Time $\overline{\mathrm{C}}_{\mathrm{Dn}}$ or $\overline{\mathrm{S}}_{\mathrm{Dn}}$ to CP_{n}	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	ns	

Note 9: Voltage Range 3.3 is $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$
Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$

AC Electrical Characteristics

Symbol	Parameter	V_{cc} (V) (Note 10)			Units
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		
			Min	Max	
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency	5.0	85		MHz
$\mathrm{t}_{\text {PLH }}$	Propagation Delay $C P_{n}$ to Q_{n} or \bar{Q}_{n}	5.0	1.0	14.0	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay $C P_{n}$ to Q_{n} or \bar{Q}_{n}	5.0	1.0	12.0	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay $\overline{\mathrm{C}}_{\mathrm{Dn}}$ or $\overline{\mathrm{S}}_{\mathrm{Dn}}$ to Q_{n} or \bar{Q}_{n}	5.0	1.0	11.5	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay $\overline{\mathrm{C}}_{\mathrm{Dn}}$ or $\overline{\mathrm{S}}_{\mathrm{Dn}}$ to Q_{n} or $\overline{\mathrm{Q}}_{\mathrm{n}}$	5.0	1.0	12.5	ns

Note 10: Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$

AC Operating Requirements

Symbol	Parameter	V_{cc} (V) (Note 11)	54ACT	Units
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$	
			Guaranteed Minimum	
$\mathrm{t}_{\text {s }}$	Setup Time, HIGH or LOW J_{n} or \bar{K}_{n} to $C P_{n}$	5.0	2.5	ns
t_{n}	Hold Time, HIGH or LOW J_{n} or \bar{K}_{n} to $C P_{n}$	5.0	2.0	ns
t_{w}	Pulse Width CP_{n} or $\overline{\mathrm{C}}_{\mathrm{Dn}}$ or $\overline{\mathrm{S}}_{\mathrm{Dn}}$	5.0	5.0	ns
$\mathrm{t}_{\text {rec }}$	Recovery Time $\overline{\mathrm{C}}_{\mathrm{Dn}} \text { or } \overline{\mathrm{S}}_{\mathrm{Dn}} \text { to } \mathrm{CP}_{\mathrm{n}}$	5.0	0.5	ns

Note 11: Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$

Capacitance

Symbol	Parameter	Typ	Units	Conditions
C_{IN}	Input Capacitance	4.5	pF	$\mathrm{V}_{\mathrm{CC}}=$ OPEN
C_{PD}	Power Dissipation Capacitance	35.0	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

Physical Dimensions inches (millimeters) unless otherwise noted

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation	National Semiconductor Europe	National Semiconductor Asia Pacific Customer	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 8586	Response Group	Tel: 81-3-5620-6175
Tel: 1-800-272-9959	Email: europe.support@nsc.com	Tel: 65-2544466	Fax: 81-3-5620-6179
Fax: 1-800-737-7018	Deutsch Tel: +49 (0) 1 80-530 8585	Fax: 65-2504466	
Email: support@nsc.com	English Tel: +49 (0) 1 80-532 7832	Email: sea.support@nsc.com	
	Français Tel: +49 (0) 1 80-532 9358		
www.national.com	Italiano Tel: +49 (0) 1 80-534 1680		

\square

54ACT109

Dual JK Positive Edge-Triggered Flip-Flop

Contents

- General Description
- Features
- Datasheet
- Package Availability, Models, Samples
\& Pricing
- Application Notes

General Description

The 'AC/'ACT109 consists of two high-speed completely independent transition clocked JK\# flip-flops. The clocking operation is independent of rise and fall times of the clock waveform. The JK\# design allows operation as a D flip-flop (refer to 'AC/'ACT74 data sheet) by connecting the J and $\mathrm{K} \#$ inputs together.

Asynchronous Inputs:
LOW input to S_{D} (Set) sets Q to HIGH level
LOW input to CH_{D} (Clear) sets Q to LOW level
Clear and Set are independent of clock
Simultaneous LOW on C_{D} and $\mathrm{S} \#_{\mathrm{D}}$ makes both Q and $\mathrm{Q} \#$

Features

- I_{CC} reduced by 50%
- Outputs source/sink 24 mA
- 'ACT109 has TTL-compatible inputs
- Standard Military Drawing (SMD) -'AC109: 5962-89551 -'ACT109: 5962-88534

Datasheet

Title	$\underset{(\text { in Kbytes })}{\text { Size }}$	Date	区 View Online	Download	Receive via Email
54AC109 54ACT109 Dual J K Positive Edge-Triggered Flip-Flop	167 Kbytes	17-Aug-98	View Online	Download	Receive via Email

Please use Adobe Acrobat to view PDF file(s).
If you have trouble printing, see Printing Problems.

Package Availability, Models, Samples \& Pricing

Part Number	Package		Status	Models		 Electronic Orders	Budgetary Pricing		Std Pack Size	Package Marking
	Type	\# pins		SPICE	IBIS		Quantity	\$US each		
5962-88534012A	LCC	20	Full production	N/A	N/A	冈	50+	\$7.7500	tube of 50	$[\operatorname{logo}] \phi \mathrm{Z} \phi \mathrm{S} \phi 4 \not 4 \mathrm{~A}$ $54 \mathrm{ACT109}$ LMQB /Q $\phi \mathrm{M} \$ \mathrm{E}$ $5962-$ 88534012 A
5962R88534012A	LCC	20	Full production	N/A	N/A	.	50+	\$69.0000	$\left.\begin{array}{\|c\|\|} \hline \text { tube } \\ \text { of } \\ 50 \end{array} \right\rvert\,$	$\begin{gathered} \hline \hline[\operatorname{logog}] \phi \mathrm{Z} \phi \mathrm{~S} \phi 4 \phi \mathrm{~A} \\ 54 \mathrm{ACT} 109 \\ \mathrm{Q} \phi \mathrm{M} \$ \mathrm{E} \\ \mathrm{R} 88534012 \mathrm{~A} \end{gathered}$

5962-8853401EA	Cerdip	16	Full production	N/A	N/A	$\square^{\text {® }}$	50+	\$2.5000	$\begin{array}{\|c} \hline \text { tube } \\ \text { of } \\ 25 \end{array}$	[logo] ϕ Z ϕ S $\phi 4 \notin \mathrm{~A} \$ \mathrm{E}$ 54ACT109DMQB /Q $¢ \mathrm{M}$ 5962-8853401EA
5962R8853401EA	Cerdip	16	Full production	N/A	N/A		50+	\$69.0000	$\begin{array}{\|c} \hline \text { tube } \\ \text { of } \\ 25 \end{array}$	[logo] $\phi \mathrm{Z} \phi \mathrm{S} \phi 4 \not 4 \mathrm{~A} \$ \mathrm{E}$ 54ACT109DMQB-RH /Q QM 5962R8853401EA
5962-8853401FA	Cerpack	16	Full production	N/A	N/A	\|	50+	\$7.7500	$\left\lvert\, \begin{array}{\|l\|l} \|c\| c u b e \\ \text { of } \\ 19 \end{array}\right.$	$\begin{gathered} \hline \hline[\operatorname{logog}] \mathrm{Z} \phi \mathrm{~S} \phi 44 \mathrm{~A} \$ \mathrm{E} \\ 54 \mathrm{ACT} 109 \mathrm{FMQB} \\ \text { Q } \not \mathrm{M} \text { 5962- } \\ 8853401 \mathrm{FA} \end{gathered}$
5962R8853401FA	Cerpack	16	Full production	N/A	N/A	.	50+	\$69.0000	$\left\lvert\, \begin{array}{\|l\|l} \|c\| c u b e \\ \text { of } \\ 19 \end{array}\right.$	$\begin{gathered} \hline \hline[\text { logo }] \phi \mathrm{Z} \phi \mathrm{~S} \phi 4 \phi \mathrm{~A} \$ \mathrm{E} \\ 54 \mathrm{ACT} 109 \mathrm{FMQB} \\ \text {-RH Q Q } 45962 \\ \text { R8853401FA } \\ \hline \end{gathered}$
5962R8853401V2A	LCC	20	Full production	N/A	N/A	.	50+	\$138.0000	$\left\lvert\, \begin{gathered} \mid \text { tube } \\ \text { of } \\ 50 \end{gathered}\right.$	$\begin{gathered} \hline[\operatorname{logog}] \phi \mathrm{Z} \phi S \phi 4 \not \subset \mathrm{~A} \\ 54 \mathrm{ACT} 109 \mathrm{E} \\ \text { RQMLV \$E } \\ 5962 \mathrm{R} \\ 8853401 \mathrm{~V} 2 \mathrm{~A} \end{gathered}$
5962R8853401VEA	Cerdip	16	Full production	N/A	N/A	.	50+	\$138.0000	$\begin{array}{\|c} \hline \text { tube } \\ \text { of } \\ 25 \end{array}$	[logo] $¢ Z \phi S \phi 4 \phi A \$ E$ 54ACT109JRQMLV 5962R8853401VEA
5962R8853401VFA	Cerpack	16	Full production	N/A	N/A	.	50+	\$138.0000	$\left\lvert\, \begin{array}{\|l\|l} \mid c & \text { tube } \\ \text { of } \\ 19 \end{array}\right.$	$\begin{gathered} \hline \hline[\text { logo }] \text { Z } \phi \text { S } \phi 4 \phi \mathrm{~A} \$ \mathrm{E} \\ 54 \mathrm{ACT109W} \\ \text { RQMLV 5962 } \\ \text { R8853401VFA } \end{gathered}$
54ACT109DM-MLS	Cerdip	16	Lifetime buy	N/A	N/A	.	50+	\$152.0000	$\begin{array}{\|c\|} \hline \text { tube } \\ \text { of } \\ 25 \end{array}$	[logo] $¢ \mathrm{Z} \phi \mathrm{S} \phi 4 \not \subset \mathrm{~A} \$ \mathrm{E}$ 54ACT109DM-MLS
54ACT109FM-MLS	Cerpack	16	Lifetime buy	N/A	N/A	.	50+	\$152.0000	$\begin{array}{\|c} \hline \text { tube } \\ \text { of } \\ 19 \end{array}$	[logo] ϕ Z ϕ S $\phi 4 \not \subset \mathrm{~A} \$ \mathrm{E}$ 54ACT109FM -MLS
54ACT109 MDS	die		Full production	N/A	N/A	.			N/A	-

Application Notes

Title	$\underset{\text { Size }}{\text { (in Kbytes) }}$	Date	\underline{x} View Online		Receive via Email
AN-925: Radiation Design Test Data for Advanced CMOS Product	194 Kbytes	5-Aug-95	View Online	Download	Receive via Email

Please use Adobe Acrobat to view PDF file(s).
If you have trouble printing, see Printing Problems.

[Information as of 2-Sep-2000]				
Quick Search	$\underline{\text { Parametric }}$	$\underline{\text { System }}$	$\underline{\text { Product }}$	Home

About Languages. About the Site. About "Cookies"
National is QS 9000 Certified . Privacy/Security Copyright © National Semiconductor Corporation
\square Preferences . Feedback

