National Semiconductor is now part of

Texas Instruments.

Search <u>http://www.ti.com/</u> for the latest technical

information and details on our current products and services.

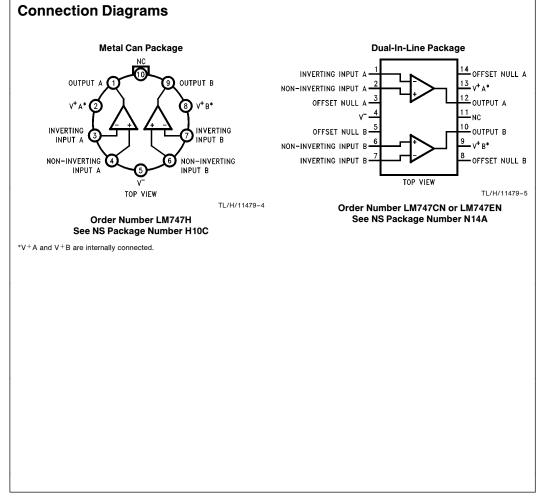
November 1994



# LM747 Dual Operational Amplifier

#### **General Description**

The LM747 is a general purpose dual operational amplifier. The two amplifiers share a common bias network and power supply leads. Otherwise, their operation is completely independent.


Additional features of the LM747 are: no latch-up when input common mode range is exceeded, freedom from oscillations, and package flexibility.

The LM747C/LM747E is identical to the LM747/LM747A except that the LM747C/LM747E has its specifications guaranteed over the temperature range from 0°C to +70°C instead of -55°C to +125°C.

#### Features

- No frequency compensation required
- Short-circuit protection
- Wide common-mode and differential voltage ranges
- Low power consumption
- No latch-up
- Balanced offset null

\_M747 Dual Operational Amplifie



©1995 National Semiconductor Corporation TL/H/11479

RRD-B30M115/Printed in U. S. A.

# **Absolute Maximum Ratings**

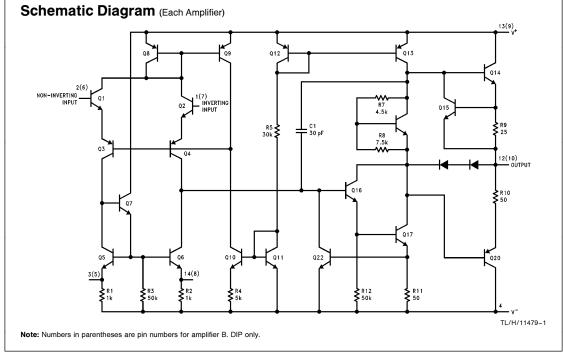
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Supply Volta LM747/L

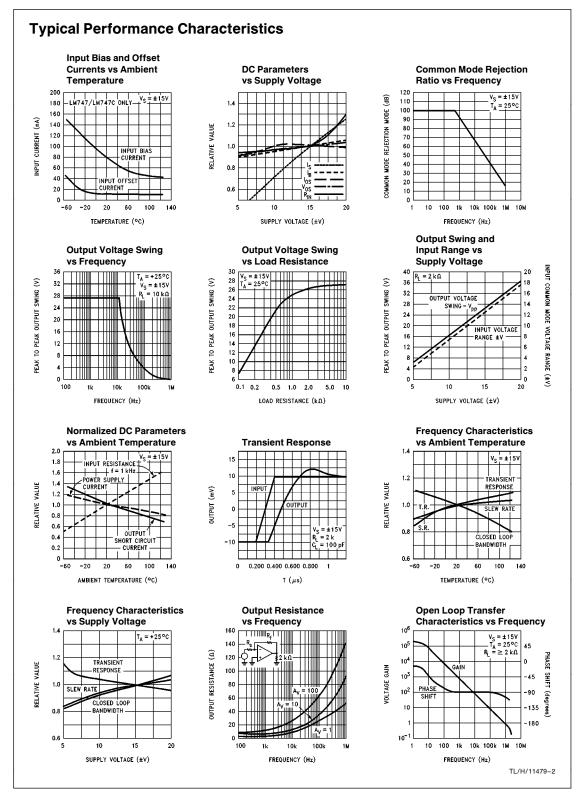
| please contact the National Semicor                                                                                   |           | Output Short-Circuit Duration         | Indefinite      |
|-----------------------------------------------------------------------------------------------------------------------|-----------|---------------------------------------|-----------------|
| Office/Distributors for availability and specifications.<br>Supply Voltage<br>LM747/LM747A ±22V<br>LM747C/LM747E ±18V |           | Operating Temperature Range           |                 |
| Supply Voltage                                                                                                        |           | LM747/LM747A                          | -55°C to +125°C |
|                                                                                                                       |           | LM747C/LM747E                         | 0°C to +70°C    |
|                                                                                                                       |           | Storage Temperature Range             | -65°C to +150°C |
| Power Dissipation (Note 1)                                                                                            | 800 mW    | Lead Temperature (Soldering, 10 sec.) | 300°C           |
| Differential Input Voltage                                                                                            | $\pm 30V$ | Leau remperature (Soldening, 10 sec.) | 300 0           |

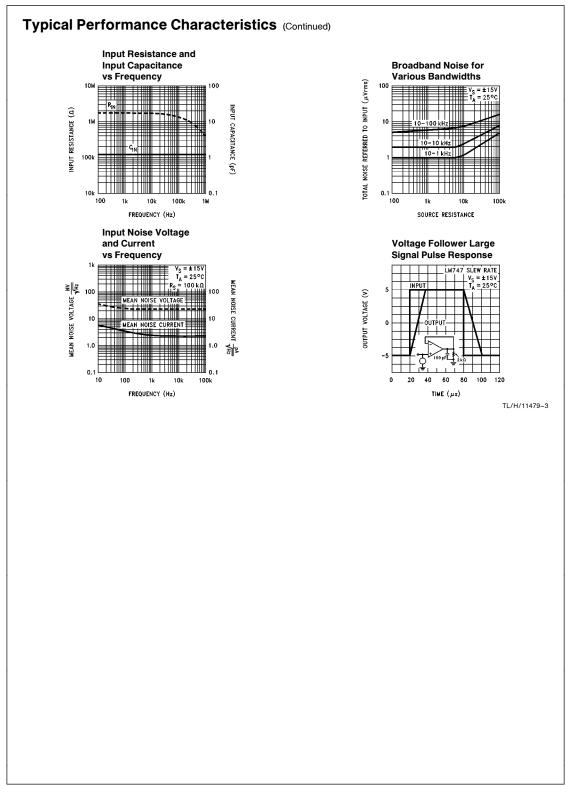
Input Voltage (Note 2)

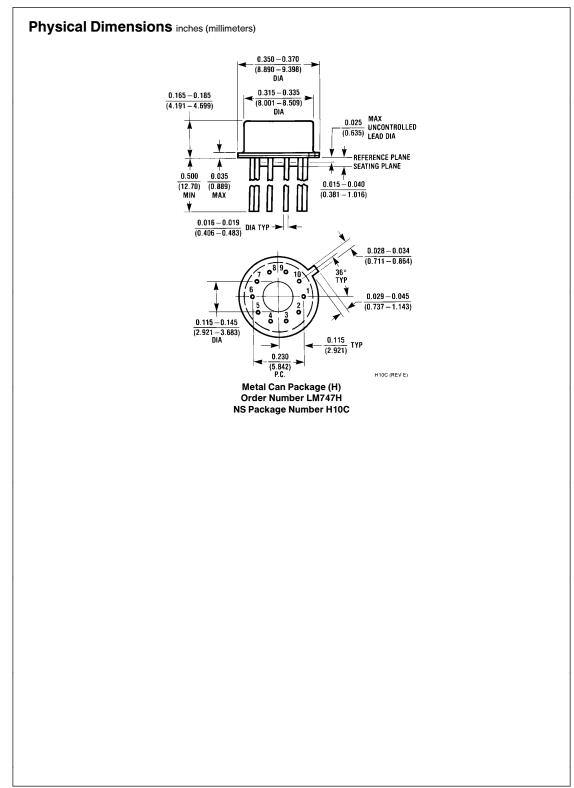
 $\pm\,15V$ 

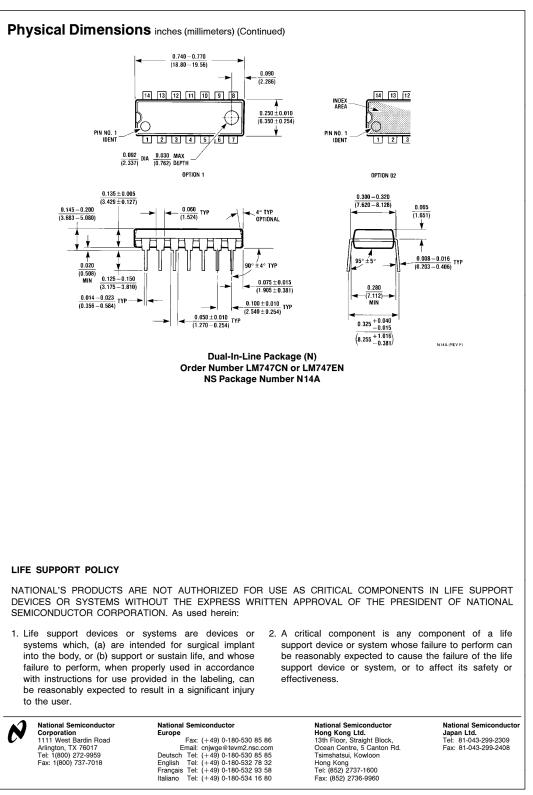
# Electrical Characteristics (Note 3)


| Parameter                                | Conditions                                                                                                                 | LM7        | 47A/LN | 1747E       |            | LM747      |            | l          | _M747C     | ;          | Units    |  |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------|--------|-------------|------------|------------|------------|------------|------------|------------|----------|--|
| Farameter                                | Conditions                                                                                                                 | Min        | Тур    | Max         | Min        | Тур        | Max        | Min        | Тур        | Max        | Unit     |  |
| Input Offset Voltage                     | $\begin{array}{l} T_{A} = 25^{\circ} C \\ R_{S} \leq 10 \; k \Omega \\ R_{S} \leq 50 \Omega \end{array}$                   |            | 0.8    | 3.0         |            | 1.0        | 5.0        |            | 2.0        | 6.0        | mV       |  |
|                                          | $\label{eq:RS} \begin{array}{l} R_S \leq 50\Omega \\ R_S \leq 10 \ \text{k}\Omega \end{array}$                             |            |        | 4.0         |            |            | 6.0        |            |            | 7.5        | m∨       |  |
| Average Input Offset<br>Voltage Drift    |                                                                                                                            |            |        | 15          |            |            |            |            |            |            | μV/°     |  |
| Input Offset Voltage<br>Adjustment Range | $T_A=25^{\circ}C, V_S=\pm 20V$                                                                                             | ±10        |        |             |            | ±15        |            |            | ±15        |            | m۷       |  |
| Input Offset Current                     | $T_A = 25^{\circ}C$                                                                                                        |            | 3.0    | 30          |            | 20         | 200        |            | 20         | 200        | nA       |  |
|                                          |                                                                                                                            |            |        | 70          |            | 85         | 500        |            |            | 300        |          |  |
| Average Input Offset<br>Current Drift    |                                                                                                                            |            |        | 0.5         |            |            |            |            |            |            | nA/'     |  |
| Input Bias Current                       | $\begin{array}{l} T_A = 25^{\circ}C \\ T_{AMIN} \leq T_A \leq T_{AMAX} \end{array} \end{array} \label{eq:tau}$             |            | 30     | 80<br>0.210 |            | 80         | 500<br>1.5 |            | 80         | 500<br>0.8 | nA<br>μA |  |
| Input Resistance                         | $T_{A}=25^{\circ}\text{C}, V_{S}=\pm20\text{V}$                                                                            | 1.0        | 6.0    |             | 0.3        | 2.0        |            | 0.3        | 2.0        |            | M        |  |
|                                          | $V_{S} = \pm 20V$                                                                                                          | 0.5        |        |             |            |            |            |            |            |            | 1013     |  |
| Input Voltage Range                      | $T_A = 25^{\circ}C$                                                                                                        |            |        |             |            |            |            | ±12        | ±13        |            | v        |  |
|                                          |                                                                                                                            | ±12        | ±13    |             | ±12        | ±13        |            |            |            |            | -        |  |
| Large Signal<br>Voltage Gain             | $ \begin{array}{l} T_A = 25^\circ C,  R_L \geq 2  k\Omega \\ V_S =  \pm 20V,  V_O =  \pm 15V \end{array} $                 | 50         |        |             |            |            |            |            |            |            | V/m      |  |
|                                          | $\label{eq:VS} \begin{array}{l} V_S = \ \pm  15 V,  V_O = \ \pm  10 V \\ R_L \geq 2  k \Omega \end{array}$                 |            |        |             | 50         | 200        |            | 20         | 200        |            | V/m      |  |
|                                          | $V_{\text{S}}=\pm20\text{V}, V_{\text{O}}=\pm15\text{V}$                                                                   | 32         |        |             |            |            |            |            |            |            | V/m      |  |
|                                          | $V_S=~\pm15V, V_O=~\pm10V$                                                                                                 |            |        |             | 25         |            |            | 15         |            |            | V/m      |  |
|                                          | $V_{S} = \pm 5V, V_{O} = \pm 2V$                                                                                           | 10         |        |             |            |            |            |            |            |            | V/m      |  |
| Output Voltage Swing                     | $\label{eq:VS} \begin{split} V_S &= \pm 20V \\ R_L \geq 10 \ k\Omega \\ R_L \geq 2 \ k\Omega \end{split}$                  | ±16<br>±15 |        |             |            |            |            |            |            |            | v        |  |
|                                          | $\label{eq:VS} \begin{split} V_S &= \pm 15 V \\ R_L &\geq 10 \ \text{k}\Omega \\ R_L &\geq 2 \ \text{k}\Omega \end{split}$ |            |        |             | ±12<br>±10 | ±14<br>±13 |            | ±12<br>±10 | ±14<br>±13 |            | V        |  |
| Output Short<br>Circuit Current          | $T_A = 25^{\circ}C$                                                                                                        | 10<br>10   | 25     | 35<br>40    |            | 25         |            |            | 25         |            | mA       |  |
| Common-Mode                              | $R_{S} \leq 10 \ \text{k}\Omega, \ V_{CM} = \ \pm 12 V$                                                                    |            |        |             | 70         | 90         |            | 70         | 90         |            | d۵       |  |
| Rejection Ratio                          | ${\sf R}_{S} \leq 50 \ \text{k}\Omega,  {\sf V}_{CM} = \ \pm 12 {\sf V}$                                                   | 80         | 95     |             |            |            |            |            |            |            | dB       |  |


| Parameter                                    | Conditions                                                                                                                         | LM7   | LM747A/LM747E |                   |     | LM747    |           |     | LM747C   |     |         |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|-------------------|-----|----------|-----------|-----|----------|-----|---------|
|                                              | Conditions                                                                                                                         | Min   | Тур           | Max               | Min | Тур      | Max       | Min | Тур      | Max | Units   |
| Supply Voltage<br>Rejection Ratio            | $\label{eq:VS} \begin{array}{l} V_S=\pm 20V \text{ to } V_S=\pm 5V \\ R_S\leq 50\Omega \\ R_S\leq 10 \ \text{k}\Omega \end{array}$ | 86    | 96            |                   | 77  | 96       |           | 77  | 96       |     | dB      |
| Transient Response<br>Rise Time<br>Overshoot | $T_A = 25^{\circ}C$ , Unity Gain                                                                                                   |       | 0.25<br>6.0   | 0.8<br>20         |     | 0.3<br>5 |           |     | 0.3<br>5 |     | μs<br>% |
| Bandwidth (Note 4)                           | $T_A = 25^{\circ}C$                                                                                                                | 0.437 | 1.5           |                   |     |          |           |     |          |     | MHz     |
| Slew Rate                                    | $T_A = 25^{\circ}C$ , Unity Gain                                                                                                   | 0.3   | 0.7           |                   |     | 0.5      |           |     | 0.5      |     | V/µs    |
| Supply Current/Amp                           | $T_A = 25^{\circ}C$                                                                                                                |       |               | 2.5               |     | 1.7      | 2.8       |     | 1.7      | 2.8 | mA      |
| Power Consumption/Amp                        | $\begin{array}{l} T_{A}=25^{\circ}C\\ V_{S}=\pm20V\\ V_{S}=\pm15V \end{array}$                                                     |       | 80            | 150               |     | 50       | 85        |     | 50       | 85  | mW      |
| LM747A                                       | $\label{eq:VS} \begin{array}{l} V_S = \pm 20V \\ T_A = T_{AMIN} \\ T_A = T_{AMAX} \end{array}$                                     |       |               | 165<br>135        |     |          |           |     |          |     | mW      |
| LM747E                                       | $V_{S} = \pm 20V$<br>$T_{A} = T_{AMIN}$<br>$T_{A} = T_{AMAX}$                                                                      |       |               | 150<br>150<br>150 |     |          |           |     |          |     | mW      |
| LM747                                        | $V_{S} = \pm 15V$ $T_{A} = T_{AMIN}$ $T_{A} = T_{AMAX}$                                                                            |       |               |                   |     | 60<br>45 | 100<br>75 |     |          |     | mW      |


Note 1: The maximum junction temperature of the LM747C/LM747E is 100°C. For operating at elevated temperatures, devies in the TO-5 package must be derated based on a thermal resistance of 150°C/W, junction to ambient, or 45°C/W, junction to case. The thermal resistance of the dual-in-line package is 100°C/W, junction to ambient.


Note 2: For supply voltages less than  $\pm$ 15V, the absolute maximum input voltage is equal to the supply voltage.


Note 3: These specifications apply for  $\pm 5V \le V_S \le \pm 20V$  and  $-55^{\circ}C \le T_A \le 125^{\circ}C$  for the LM747A and  $0^{\circ}C \le T_A \le 70^{\circ}C$  for the LM747E unless otherwise specified. The LM747A and LM747C are specified for  $V_S = \pm 15V$  and  $-55^{\circ}C \le T_A \le 125^{\circ}C$  and  $0^{\circ}C \le T_A \le 70^{\circ}C$ , respectively, unless otherwise specified. Note 4: Calculated value from: 0.35/Rise Time ( $\mu$ s).











National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

<u>Products</u> > <u>Analog - Amplifiers</u> > <u>Operational Amplifiers</u> > <u>General Purpose</u> > LM747

# LM747 Product Folder

# **Dual Operational Amplifier**

# See Also: LMC6061 - lower offset voltage

| GeneralDescription                   | Datasheet        | Package<br>& Models | <u>Samples</u><br><u>&amp; Pricing</u> | <u>Design</u><br><u>Tools</u> | <u>Application</u><br><u>Notes</u> |  |  |
|--------------------------------------|------------------|---------------------|----------------------------------------|-------------------------------|------------------------------------|--|--|
| Parametric Table                     |                  | Parametric          | Table                                  |                               |                                    |  |  |
| Channels (Channels)                  | 2                | Maximum             | Maximum Supply Voltage (Volt)          |                               |                                    |  |  |
| Input Output Type                    | Not Rail to Rail | Offset Volt         | Offset Voltage, Max (mV)               |                               |                                    |  |  |
| Bandwidth, typ (MHz)                 | 1.50             | Input Bias          | Current, Temp                          | Max (nA)                      | 1500                               |  |  |
| Slew Rate, typ (Volts/usec)          | .50              | Output Cu           | Output Current, typ (mA)               |                               |                                    |  |  |
| Supply Current per Channel, typ (mA) | 1.70             | Voltage No          | Voltage Noise, typ (nV/Hz)             |                               |                                    |  |  |
| Minimum Supply Voltage (Volt)        | 10               | Shut down           | Shut down                              |                               |                                    |  |  |
| <u>h</u>                             |                  | Special Fea         | atures                                 |                               | Vos Adj                            |  |  |

#### Datasheet

| Title                                        | Size in Kbytes | Date     | View | Online        | Download        | Receive via Email        |
|----------------------------------------------|----------------|----------|------|---------------|-----------------|--------------------------|
| LM747 Dual Operational Amplifier             | 162 Kbytes     | 7-Jan-96 | View | <u>Online</u> | <u>Download</u> | Receive via Email        |
| LM747 Mil-Aero (JAN) Datasheet<br>MJLM747A-X | 16 Kbytes      |          | View | <u>Online</u> | <u>Download</u> | Receive via Email        |
| LM747 Mil-Aero Datasheet<br>MNLM747-X        | 21 Kbytes      |          | View | <u>Online</u> | <u>Download</u> | <u>Receive via Email</u> |
| LM747 Mil-Aero Datasheet<br>MNLM747A-X       | 13 Kbytes      |          | View | <u>Online</u> | <u>Download</u> | Receive via Email        |

If you have trouble printing or viewing PDF file(s), see <u>Printing Problems</u>.

# Package Availability, Models, Samples & Pricing

| Part Number | Pac         | Package |     | Status             | Status Mode |      | Samples &<br>Electronic |     | Budgetary<br>Pricing |                  | <u>Package</u><br><u>Marking</u> |
|-------------|-------------|---------|-----|--------------------|-------------|------|-------------------------|-----|----------------------|------------------|----------------------------------|
|             | Туре        | Pins    | MSL |                    | SPICE       | IBIS | Orders                  | Qty | <b>\$US each</b>     | Size             | marking                          |
| LM747H      | <u>TO-5</u> | 10      | MSL | Full<br>production | N/A         | N/A  | Buy Now                 | 1K+ | \$1.7600             | box<br>of<br>500 | [logo]¢Z¢2¢T<br>LM747H           |

| LM747AH-MIL     | <u>TO-5</u>    | 10          | MSL | Full<br>production | N/A | N/A | Buy Now | 50+ | \$3.5000   | tray<br>of<br>20          | [logo] ¢Z¢S¢4¢A\$E<br>LM747AH-MIL                      |
|-----------------|----------------|-------------|-----|--------------------|-----|-----|---------|-----|------------|---------------------------|--------------------------------------------------------|
| LM747H/883      | <u>TO-5</u>    | 10          | MSL | Full<br>production | N/A | N/A | Buy Now | 50+ | \$2.5600   | tray<br>of<br>20          | [logo]¢Z¢S¢4¢A\$E<br>LM747H/883Q                       |
| LM747J/883      | CERDIP         | 14          | MSL | Full<br>production | N/A | N/A | Buy Now | 50+ | \$1.9400   | rail<br>of<br>25          | [logo]¢Z¢S¢4¢A\$E<br>LM747J/883Q¢M                     |
| JM38510/10102BI | <u>TO-5</u>    | 10          | MSL | Full<br>production | N/A | N/A |         | 50+ | \$10.3000  | tray<br>of<br>20          | [logo] cZcSc4cA<br>27014 QS<br>JM38510/10102BIA<br>\$E |
| JM38510/10102BC | CERDIP         | 14          | MSL | Full<br>production | N/A | N/A |         | 50+ | \$12.2000  | rail<br>of<br>25          | [logo] cZcSc4cA\$E<br>JM38510/10102BCA<br>27014 QS     |
| JM38510/10102BD | <u>CERPACK</u> | 14          | MSL | Full<br>production | N/A | N/A |         | 50+ | \$18.3000  | rail<br>of<br>19          | [logo]¢Z¢S¢4¢A\$E<br>JM38510/<br>10102BDA<br>27014 QS  |
| JM38510/10102SI | <u>TO-5</u>    | 10          | MSL | Full<br>production | N/A | N/A |         | 50+ | \$213.0000 | tray<br>of<br>20          | [logo] cZcSc4cA\$E<br>27014 Q<br>JM38510/10102SIA      |
| JM38510/10102SC | CERDIP         | 14          | MSL | Full<br>production | N/A | N/A |         | 50+ | \$195.0000 | rail<br>of<br>25          | [logo] ¢Z¢S¢4¢A\$E<br>JM38510/10102SCA<br>27014 Q      |
| LM747 MDC       | Ē              | ) <u>ie</u> | ,   | Full<br>production | N/A | N/A | Samples | ]   |            | tray<br>of<br>N/A         | -                                                      |
| LM747 MWC       | Wa             | afer        |     | Full<br>production | N/A | N/A |         |     |            | wafer<br>jar<br>of<br>N/A | -                                                      |
| LM747L MD8      | Ē              | <u>)ie</u>  |     | Full<br>production | N/A | N/A | Samples |     |            | tray<br>of<br>N/A         | -                                                      |
| LM747L MW8      | Wa             | afer        |     | Full<br>production | N/A | N/A |         |     |            | wafer<br>jar<br>of<br>N/A | -                                                      |

# **General Description**

The LM747 is a general purpose dual operational amplifier. The two amplifiers share a common bias network and power supply leads. Otherwise, their operation is completely independent.

Additional features of the LM747 are: no latch-up when input common mode range is exceeded, freedom from oscillations, and package flexibility.

The LM747C/LM747E is identical to the LM747/LM747A except that the LM747C/LM747E has its specifications guaranteed over the temperature range from  $0^{\circ}$ C to  $+70^{\circ}$ C instead of  $-55^{\circ}$ C to  $+125^{\circ}$ C.

#### Features

- No frequency compensation required
- Short-circuit protection
- Wide common-mode and differential voltage ranges
- Low power consumption
- No latch-up
- Balanced offset null

#### **Design Tools**

| Title                                           | Size in Kbytes | Date        | Viev        | v Online | Dow | nload | Receive via Email |
|-------------------------------------------------|----------------|-------------|-------------|----------|-----|-------|-------------------|
| Amplifiers Selection Guide software for Windows | 7 Kbytes       | 12-Jun-2002 | <u>View</u> | 7        |     |       |                   |

If you have trouble printing or viewing PDF file(s), see <u>Printing Problems</u>.

# **Application Notes**

| Title                                                        | Size in Kbytes |           | View Online | Download | Receive via Email |
|--------------------------------------------------------------|----------------|-----------|-------------|----------|-------------------|
| <b>AN-509:</b> Using the TP3401/2/3<br>ISDN PBX Transceivers | 195 Kbytes     | 4-Nov-95  | View Online | Download | Receive via Email |
| <b>LB-44:</b> Get More Power Out of<br>Dual or Quad Op-Amps  | 71 Kbytes      | 28-Jun-96 | View Online | Download | Receive via Email |

If you have trouble printing or viewing PDF file(s), see <u>Printing Problems</u>.

#### [Information as of 5-Aug-2002]

| Search                          | <u>Design</u>          | <b>Purchasing</b>             | <u>Quality</u>     | Company                      | <u>Home</u> |
|---------------------------------|------------------------|-------------------------------|--------------------|------------------------------|-------------|
| About Languages . Website Guide | e . <u>About</u> "Cool | kies" . National is <u>QS</u> | 9000 Certified . F | Privacy/Security Statement . |             |
| About Languages . Website Guide |                        |                               |                    | 0                            |             |

<u>Contact Us</u> . <u>Site Terms & Conditions of Use</u> . Copyright 2002 © National Semiconductor Corporation . <u>My Preferences</u> . <u>Feedback</u>