National Semiconductor is now part of

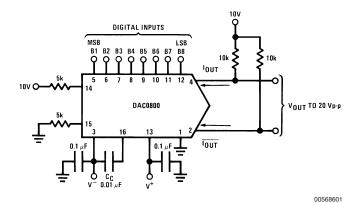
Texas Instruments.

Search <u>http://www.ti.com/</u> for the latest technical

information and details on our current products and services.

DAC0800/DAC0802 8-Bit Digital-to-Analog Converters **General Description**

The DAC0800 series are monolithic 8-bit high-speed current-output digital-to-analog converters (DAC) featuring typical settling times of 100 ns. When used as a multiplying DAC, monotonic performance over a 40 to 1 reference current range is possible. The DAC0800 series also features high compliance complementary current outputs to allow differential output voltages of 20 Vp-p with simple resistor loads. The reference-to-full-scale current matching of better than ± 1 LSB eliminates the need for full-scale trims in most applications, while the nonlinearities of better than $\pm 0.1\%$ over temperature minimizes system error accumulations.


The noise immune inputs will accept a variety of logic levels. The performance and characteristics of the device are essentially unchanged over the ±4.5V to ±18V power supply range and power consumption at only 33 mW with ±5V supplies is independent of logic input levels.

The DAC0800, DAC0802, DAC0800C and DAC0802C are a direct replacement for the DAC-08, DAC-08A, DAC-08C, and DAC-08H, respectively. For single supply operation, refer to AN-1525.

Features

- Fast settling output current: 100 ns
- Full scale error: ±1 LSB
- Nonlinearity over temperature: ±0.1%
- Full scale current drift: ±10 ppm/°C
- High output compliance: -10V to +18V
- Complementary current outputs
- Interface directly with TTL, CMOS, PMOS and others
- 2 quadrant wide range multiplying capability
- Wide power supply range: ±4.5V to ±18V
- Low power consumption: 33 mW at ±5V
- Low cost

Typical Application

Ordering Information

Non-	Temperature			Order Numb			
Linearity	Range (T _A)	J Package	(J16A) *	N Package	(N16E) *	SO Package (M16A)	
±0.1% FS	0°C to +70°C	DAC0802LCJ	DAC-08HQ	DAC0802LCN	DAC-08HP	DAC0802LCM	
±0.19% FS	–55°C to +125°C	DAC0800LJ	DAC-08Q				
±0.19% FS	0°C to +70°C	DAC0800LCJ	DAC-08EQ	DAC0800LCN	DAC-08EP	DAC0800LCM	

* Devices may be ordered by using either order number.

DAC0800/DAC0802

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V ⁺ - V ⁻)	±18V or 36V
Power Dissipation (Note 2)	500 mW
Reference Input Differential Voltage	
(V14 to V15)	V^- to V^+
Reference Input Common-Mode	
Range (V14, V15)	V^- to V^+
Reference Input Current	5 mA
Logic Inputs	V^{-} to V^{-} plus 36V
Analog Current Outputs	
$(V_{\rm S} - = -15V)$	4.25 mA
ESD Susceptibility (Note 3)	TBD V
Storage Temperature	–65°C to +150°C
Lead Temp. (Soldering, 10 seconds)	
Dual-In-Line Package (plastic)	260°C
Dual-In-Line Package (ceramic)	300°C
Surface Mount Package	
Vapor Phase (60 seconds)	215°C
Infrared (15 seconds)	220°C

Operating Cond	(Note	1)	
	Min	Max	Units
Temperature (T _A)			
DAC0800L	-55	+125	°C
DAC0800LC	0	+70	°C
DAC0802LC	0	+70	°C
V+	(V ⁻) + 10	(V ⁻) + 30	V
V–	-15	-5	V
$I_{REF} (V^- = -5V)$	1	2	mA
$I_{REF} (V^{-} = -15V)$	1	4	mA

Electrical Characteristics

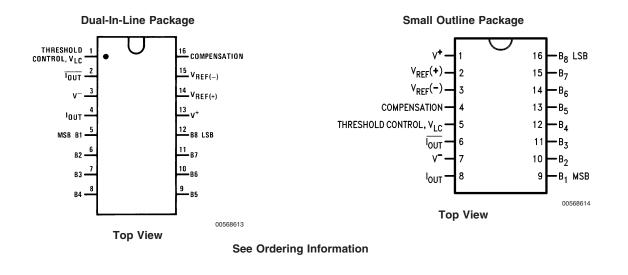
The following specifications apply for $V_S = \pm 15V$, $I_{REF} = 2$ mA and $T_{MIN} \le T_A \le T_{MAX}$ unless otherwise specified. Output characteristics refer to both I_{OUT} and $\overline{I_{OUT}}$.

Symbol	Parameter	Conditions	D	AC0802L	.C	D	Units		
Symbol ts ts tPLH, tPHL TCIFS VOC IFS4 IFS5 IZS IFSR			Min	Тур	Max	Min	Тур	Max	1
	Resolution		8	8	8	8	8	8	Bits
	Monotonicity		8	8	8	8	8	8	Bits
	Nonlinearity				±0.1			±0.19	%FS
t _s	Settling Time	To $\pm \frac{1}{2}$ LSB, All Bits Switched "ON" or "OFF", T _A =25°C		100	135				ns
		DAC0800L					100	135	ns
		DAC0800LC					100	150	ns
t _{PLH} ,	Propagation Delay	T _A =25°C							
t _{PHL}	Each Bit			35	60		35	60	ns
	All Bits Switched			35	60		35	60	ns
TCI _{FS}	Full Scale Tempco			±10	±50		±10	±50	ppm/°C
V _{oc}	Output Voltage Compliance	Full Scale Current Change <½ LSB, R _{OUT} >20 MΩ, Typical	-10		18	-10		18	V
I _{FS4}	Full Scale Current	$V_{REF} = 10.000V,$ R14 = R15 = 5.000 kΩ, T _A =25°C	1.984	1.992	2.00	1.94	1.99	2.04	mA
I _{FSS}	Full Scale Symmetry	I _{FS4} -I _{FS2}		±0.5	±4.0		±1	±8.0	μA
	Zero Scale Current			0.1	1.0		0.2	2.0	μA
	Output Current Range	$V^{-} = -5V$ $V^{-} = -8V$ to -18V	0	2.0 2.0	2.1 4.2	0 0	2.0 2.0	2.1 4.2	mA

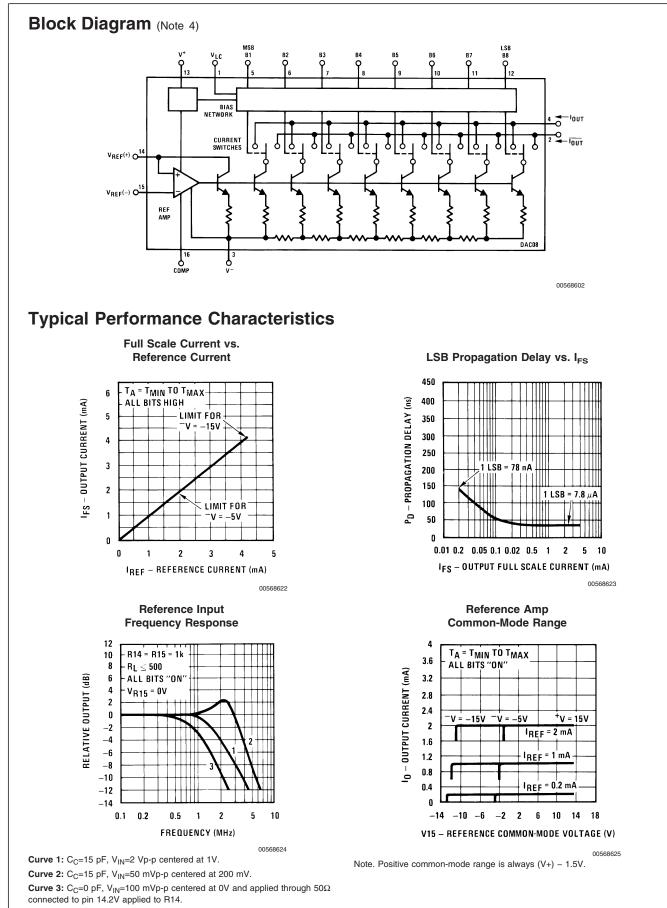
Electrical Characteristics (Continued)

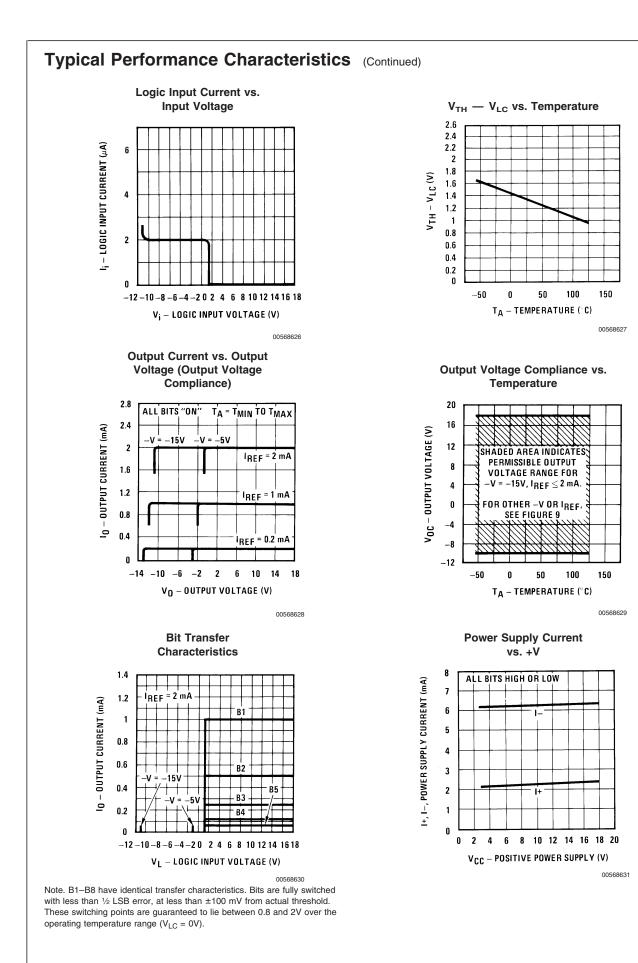
The following specifications apply for $V_S = \pm 15V$, $I_{REF} = 2$ mA and $T_{MIN} \le T_A \le T_{MAX}$ unless otherwise specified. Output characteristics refer to both I_{OUT} and $\overline{I_{OUT}}$.

Symbol	Parameter	Conditions	C	AC0802L	.C	[Units		
Symbol V _{IL} V _{IH} I _{IL} I _{IH} VIR IIH VIR III VIR IS VTHR IS dl/dt PSSIFS+ PSSIFS- I+ I- I+ I- PD			Min	Тур	Max	Min	Тур	Max	
	Logic Input Levels	$V_{LC} = 0V$							
V _{IL}	Logic "0"				0.8			0.8	V
VIH	Logic "1"		2.0			2.0			V
	Logic Input Current	$V_{LC} = 0V$							
I _{IL}	Logic "0"	$-10V \le V_{IN} \le +0.8V$		-2.0	-10		-2.0	-10	μA
I _{IH}	Logic "1"	$2V \le V_{IN} \le +18V$		0.002	10		0.002	10	μA
V _{IS}	Logic Input Swing	V ⁻ = -15V	-10		18	-10		18	V
V _{THR}	Logic Threshold Range	$V_{\rm S} = \pm 15 V$	-10		13.5	-10		13.5	V
I ₁₅	Reference Bias Current			-1.0	-3.0		-1.0	-3.0	μA
dl/dt	Reference Input Slew Rate	(Figure 11)	4.0	8.0		4.0	8.0		mΑ/με
PSSI _{FS+}	Positive Power Supply Sensitivity	$4.5V \le V^+ \le 18V$		0.0001	0.01		0.0001	0.01	%/%
PSSI _{FS-}	Negative Power Supply Sensitivity	$-4.5V \le V^- \le 18V$, I _{REF} = 1mA		0.0001	0.01		0.0001	0.01	%/%
l+	Davida Overski Oversat			2.3	3.8		2.3	3.8	mA
I–	Power Supply Current	$V_{S} = \pm 5V, I_{REF} = 1 \text{ mA}$		-4.3	-5.8		-4.3	-5.8	mA
l+	Dever Currely Current	V _S = +5V, -15V, I _{REF} = 2		2.4	3.8		2.4	3.8	mA
I–	Power Supply Current	mA		-6.4	-7.8		-6.4	-7.8	mA
l+	Device Cuerchy Current			2.5	3.8		2.5	3.8	mA
I–	Power Supply Current	$V_{S} = \pm 15V$, $I_{REF} = 2 \text{ mA}$		-6.5	-7.8		-6.5	-7.8	mA
		±5V, I _{REF} = 1 mA		33	48		33	48	mW
P _D	Power Consumption	+5V, –15V, I _{REF} = 2 mA		108	136		108	136	mW
		±15V, I _{BEF} = 2 mA		135	174		135	174	mW

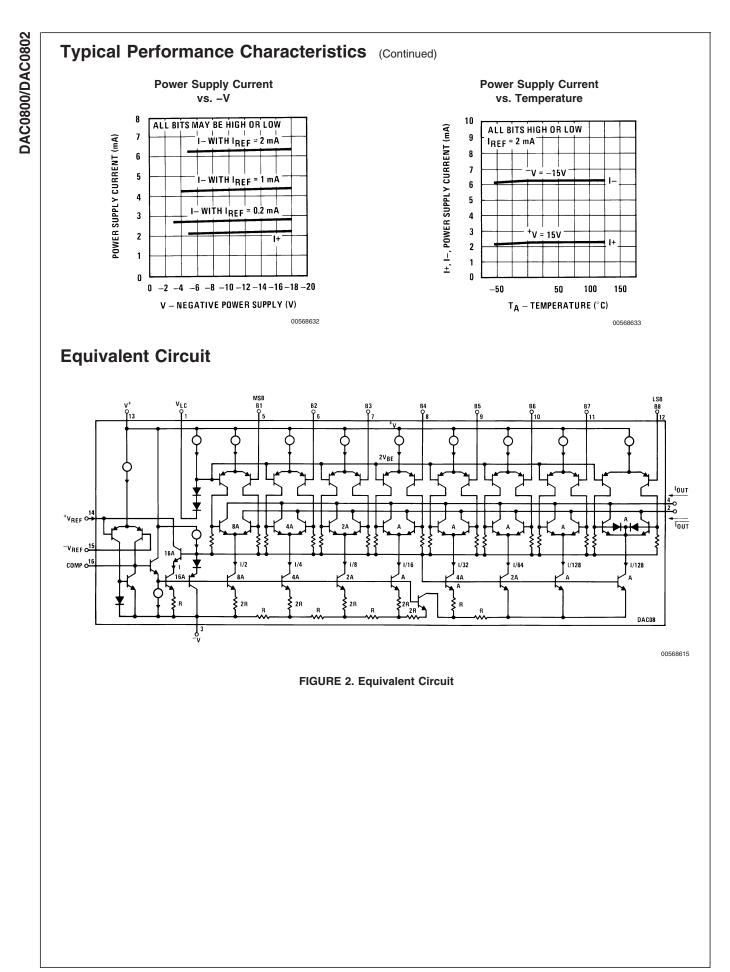

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.

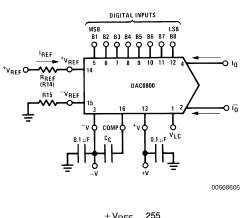
Note 2: The maximum junction temperature of the DAC0800 and DAC0802 is 125°C. For operating at elevated temperatures, devices in the Dual-In-Line J package must be derated based on a thermal resistance of 100°C/W, junction-to-ambient, 175°C/W for the molded Dual-In-Line N package and 100°C/W for the Small Outline M package.


Note 3: Human body model, 100 pF discharged through a 1.5 k Ω resistor.


Note 4: Pin numbers represent the Dual-In-Line package. The Small Outline package pin numbers differ from from that of the Dual-In-Line package.

Connection Diagrams


DAC0800/DAC0802



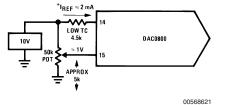
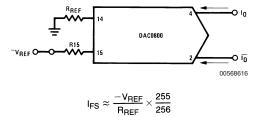
www.national.com

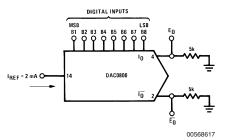
DAC0800/DAC0802

Typical Applications

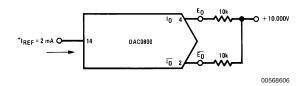
$$I_{\text{FS}} \approx \frac{+\,V_{\text{REF}}}{R_{\text{REF}}} \times \frac{255}{256}$$

$$\begin{split} &I_O+\bar{I}_O=I_{FS} \text{ for all logic states} \\ &\text{For fixed reference, TTL operation, typical values are:} \\ &V_{REF}=10.000V\\ &R_{REF}=5.000k\\ &R15\approx R_{REF}\\ &C_C=0.01 \ \mu\text{F}\\ &V_{LC}=0V \text{ (Ground)} \end{split}$$


FIGURE 4. Recommended Full Scale Adjustment Circuit (Note 4)

Note. $\mathsf{R}_{\mathsf{REF}}$ sets $\mathsf{I}_{\mathsf{FS}};\,\mathsf{R15}$ is for bias current cancellation


FIGURE 5. Basic Negative Reference Operation (Note 4)

Typical Applications (Continued)

	B1	B2	B 3	B 4	B 5	B 6	B 7	B 8	l _o mA	Ī _o mA	Eo	Ēo
Full Scale	1	1	1	1	1	1	1	1	1.992	0.000	-9.960	0.000
Full Scale-LSB	1	1	1	1	1	1	1	0	1.984	0.008	-9.920	-0.040
Half Scale+LSB	1	0	0	0	0	0	0	1	1.008	0.984	-5.040	-4.920
Half Scale	1	0	0	0	0	0	0	0	1.000	0.992	-5.000	-4.960
Half Scale-LSB	0	1	1	1	1	1	1	1	0.992	1.000	-4.960	-5.000
Zero Scale+LSB	0	0	0	0	0	0	0	1	0.008	1.984	-0.040	-9.920
Zero Scale	0	0	0	0	0	0	0	0	0.000	1.992	0.000	-9.960

FIGURE 6. Basic Unipolar Negative Operation (Note 4)

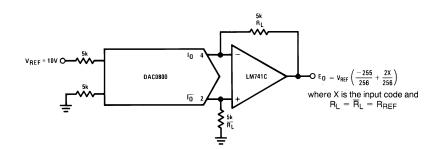
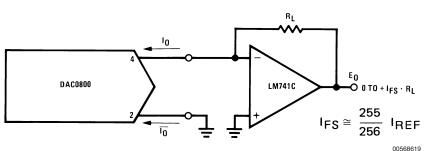

	B 1	B 2	B 3	B 4	B 5	B 6	B7	B 8	Eo	Ēo
Pos. Full Scale	1	1	1	1	1	1	1	1	-9.920	+10.000
Pos. Full Scale-LSB	1	1	1	1	1	1	1	0	-9.840	+9.920
Zero Scale+LSB	1	0	0	0	0	0	0	1	-0.080	+0.160
Zero Scale	1	0	0	0	0	0	0	0	0.000	+0.080
Zero Scale-LSB	0	1	1	1	1	1	1	1	+0.080	0.000
Neg. Full Scale+LSB	0	0	0	0	0	0	0	1	+9.920	-9.840
Neg. Full Scale	0	0	0	0	0	0	0	0	+10.000	-9.920

FIGURE 7. Basic Bipolar Output Operation (Note 4)

DAC0800/DAC0802

00568618


Typical Applications (Continued)

If $R_L = \overline{R}_L$ within ±0.05%, output is symmetrical about ground

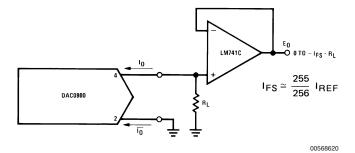
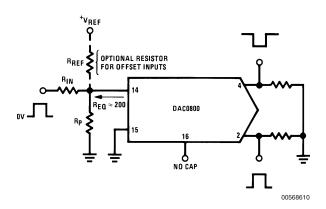
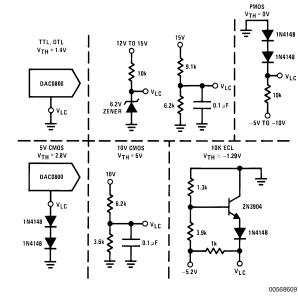

	B1	B2	B 3	B 4	B 5	B6	B7	B 8	Eo
Pos. Full Scale	1	1	1	1	1	1	1	1	+9.960
Pos. Full Scale-LSB	1	1	1	1	1	1	1	0	+9.880
(+)Zero Scale	1	0	0	0	0	0	0	0	+0.040
(-)Zero Scale	0	1	1	1	1	1	1	1	-0.040
Neg. Full Scale+LSB	0	0	0	0	0	0	0	1	-9.880
Neg. Full Scale	0	0	0	0	0	0	0	0	-9.960

FIGURE 8.	Symmetrical	Offset	Binary	Operation	(Note 4)
			,		(

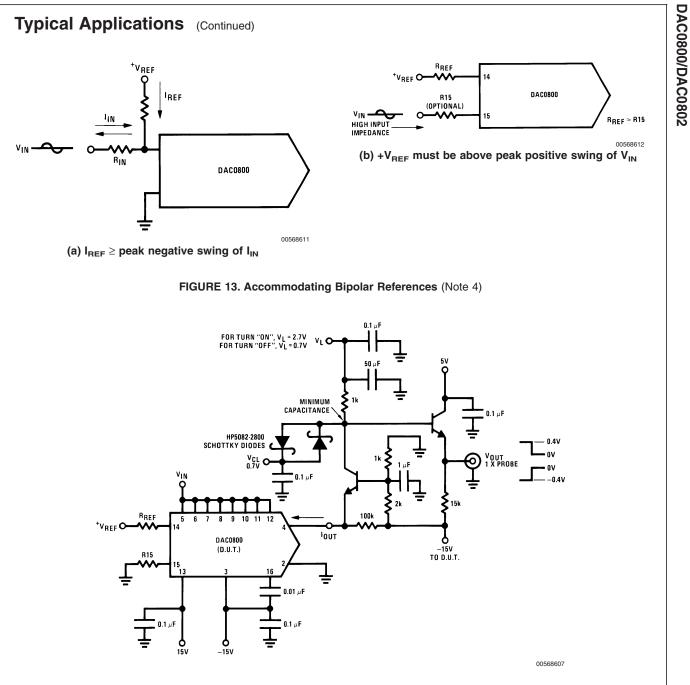
For complementary output (operation as negative logic DAC), connect inverting input of op amp to \overline{I}_{O} (pin 2), connect I_{O} (pin 4) to ground.

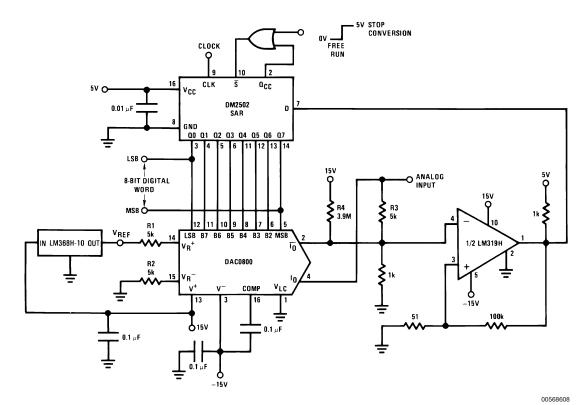

FIGURE 9. Positive Low Impedance Output Operation (Note 4)

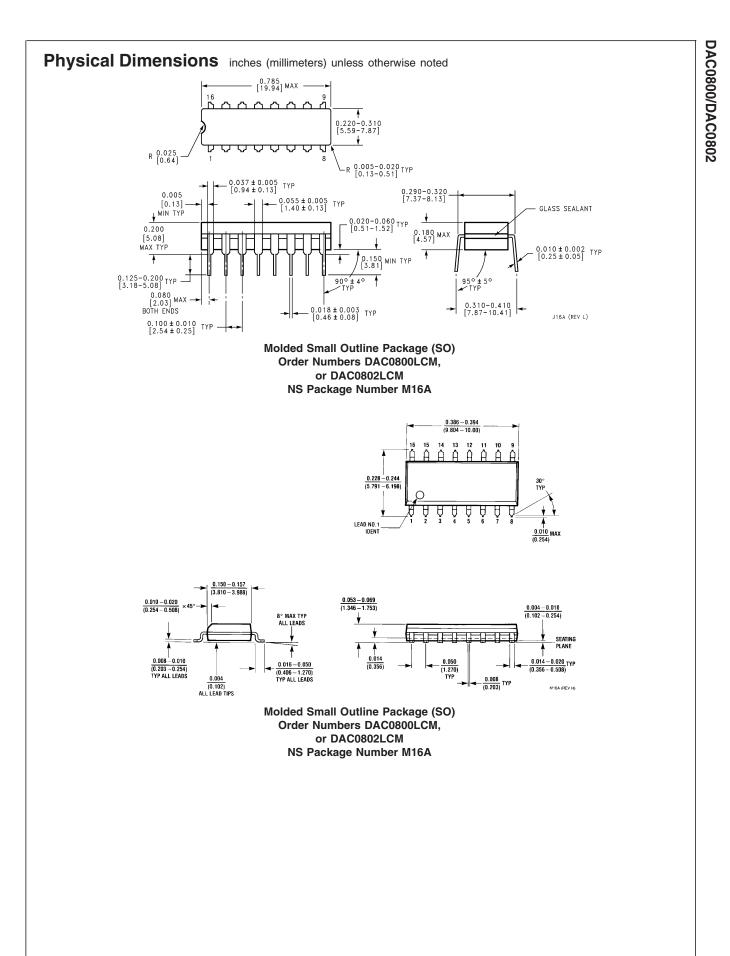
For complementary output (operation as a negative logic DAC) connect non-inverting input of op am to \tilde{I}_O (pin 2); connect I_O (pin 4) to ground.

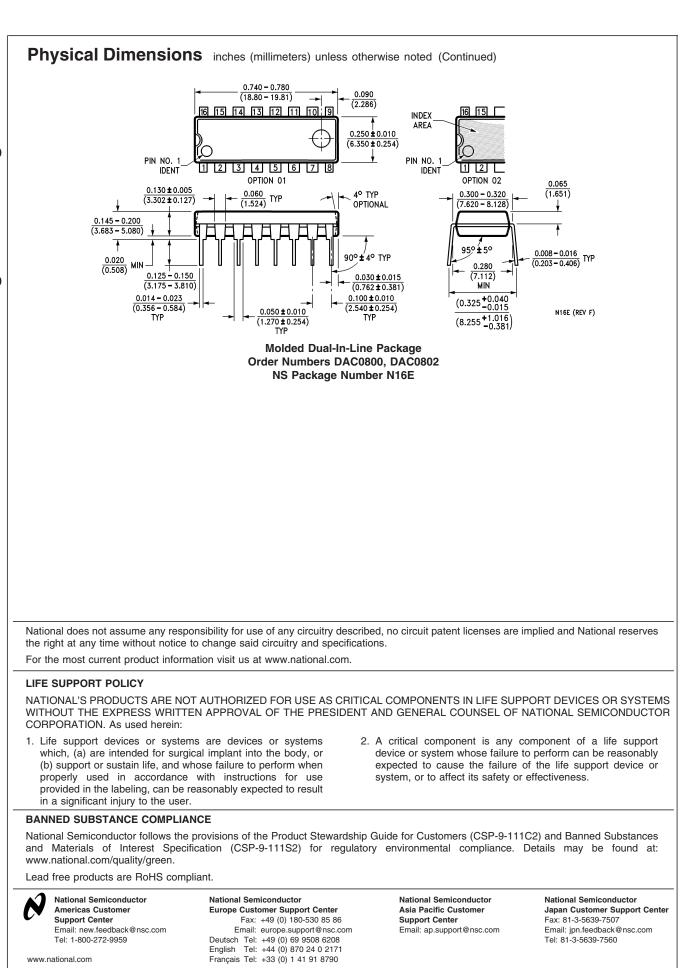

FIGURE 10. Low Impedance Negative Output Operation (Note 4)

Typical Applications (Continued)


Typical values: R_{IN}=5k,+V_{IN}=10V


 $V_{TH} = V_{LC} + 1.4V$ 15V CMOS, HTL, HNIL $V_{TH} = 7.6V$ Note. Do not exceed negative logic input range of DAC.




Typical Applications (Continued)

Note. For 1 μ s conversion time with 8-bit resolution and 7-bit accuracy, an LM361 comparator replaces the LM319 and the reference current is doubled by reducing R1, R2 and R3 to 2.5 k Ω and R4 to 2 M Ω .

FIGURE 15. A Complete 2 µs Conversion Time, 8-Bit A/D Converter (Note 4)

