National Semiconductor is now part of Texas Instruments.

Search http://www.ti.com/ for the latest technical information and details on our current products and services.

National Semiconductor

LF155/LF156/LF157 Series Monolithic **JFET Input Operational Amplifiers**

General Description

These are the first monolithic JFET input operational amplifiers to incorporate well matched, high voltage JFETs on the same chip with standard bipolar transistors (BI-FETTM Technology). These amplifiers feature low input bias and offset currents/low offset voltage and offset voltage drift, coupled with offset adjust which does not degrade drift or commonmode rejection. The devices are also designed for high slew rate, wide bandwidth, extremely fast settling time, low voltage and current noise and a low 1/f noise corner.

Advantages

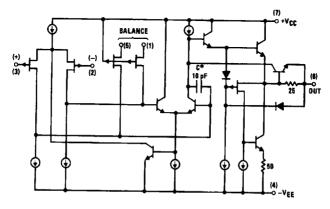
- Replace expensive hybrid and module FET op amps
- Rugged JFETs allow blow-out free handling compared with MOSFET input devices
- Excellent for low noise applications using either high or low source impedance-very low 1/f corner
- Offset adjust does not degrade drift or common-mode rejection as in most monolithic amplifiers
- New output stage allows use of large capacitive loads (5,000 pF) without stability problems
- Internal compensation and large differential input voltage capability

Applications

- Precision high speed integrators
- Fast D/A and A/D converters
- High impedance buffers
- Wideband, low noise, low drift amplifiers
- Logarithmic amplifiers

- Photocell amplifiers
- Sample and Hold circuits

Common Features


(LF155A, LF156A, LF157A)

■ Low input bias current	30 pA
■ Low Input Offset Current	Aq E
■ High input impedance	$10^{12}\Omega$
■ Low input offset voltage	1 mV
■ Low input offset voltage temp. drift	3 μV/°C
■ Low input noise current	0.01 pA/√Hz
 High common-mode rejection ratio 	100 dB
■ Large dc voltage gain	106 dB

Uncommon Features

	LF155A	LF156A	LF157A (A _V =5)	Units
■ Extremely fast settling time to 0.01%	4	1.5	1.5	μs
■ Fast slew				
rate	5	12	50	V/μs
Wide gain bandwidth	2.5	5	20	MHz
Low input noise voltage	20	12	12	nV/√Hz

Simplified Schematic

*3 pF in LF157 series

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/Distributors for availability and specifications.

	•	•	•	••	۰
N	^	te	g	١	

(Note 8)	LF155A/6A/7A	LF155/6/7	LF355B/6B/7B LF255/6/7	LF355/6/7 LF355A/6A/7A
Supply Voltage	± 22V	±22V	± 22V	±18V
Differential Input Voltage	± 40V	±40V	± 40V	±30V
Input Voltage Range (Note 2)	±20V	±20V	±20V	± 16V
Output Short Circuit Duration	Continuous	Continuous	Continuous	Continuous
T _{IMAX} H-Package N-Package M-Package	150°C	150°C	115°C 100°C 100°C	115°C 100°C 100°C
Power Dissipation at T _A = 25°C (Notes H-Package (Still Air) H-Package (400 LF/Min Air Flow) N-Package M-Package	1 and 9) 560 mW 1200 mW	560 mW 1200 mW	400 mW 1000 mW 670 mW 380 mW	400 mW 1000 mW 670 mW 380 mW
Thermal Resistance (Typical) $ heta_{ m JA}$ H-Package (Still Air) H-Package (400 LF/Min Air Flow) N-Package M-Package	160°C/W 65°C/W	160°C/W 65°C/W	160°C/W 65°C/W 130°C/W 195°C/W	160°C/W 65°C/W 130°C/W 195°C/W
(Typical) $ heta_{ m JC}$ H-Package	23°C/W	23°C/W	23°C/W -65°C to +150°C	23°C/W 65°C to +150°C
Storage Temperature Range Soldering Information (Lead Temp.)	-65°C to +150°C	65°C to +150°C.	65°C 10 + 150 C	-65 C to + 150 C
Metal Can Package Soldering (10 sec.)	300°C	300°C	300°C	300°C
Dual-In-Line Package Soldering (10 sec.)		260°C	260°C	260°C
Small Outline Package Vapor Phase (60 sec.) Infrared (15 sec.)			215°C 220°C	215°C 220°C

mount devices. ESD tolerance

(100 pF discharged through 1.5 k Ω)

1000V

1000V

1000V

1000V

DC Electrical Characteristics (Note 3) $T_A = T_j = 25^{\circ}C$

			LF1	55A/6A	/7A	LF3	55A/6A	7A	Units
Symbol	Parameter	Conditions	Min	Тур	Max	Min	Тур	Max	Ullis
Vos	Input Offset Voltage	R _S =50Ω, T _A =25°C Over Temperature		1	2 2.5		1	2 2.3	mV mV
ΔV _{OS} /ΔT	Average TC of Input Offset Voltage	$R_S = 50\Omega$		3	5		3	5	μV/°C
ΔTC/ΔV _{OS}	Change in Average TC with VOS Adjust	R _S =50Ω, (Note 4)		0.5			0.5		μV/°C per m\
los	Input Offset Current	$T_j = 25$ °C, (Notes 3, 5) $T_i \le T_{HIGH}$		3	10 10		3	10 1	pA nA
IB	Input Bias Current	$T_j = 25$ °C, (Notes 3, 5) $T_j \le T_{HIGH}$		30	50 25		30	50 5	pA nA
R _{IN}	Input Resistance	T _j =25°C		1012			10 ¹²		Ω
Avol	Large Signal Voltage	V _S = ± 15V, T _A = 25°C	50	200		50	200		V/mV
· · · · ·	Gain	V _O = ± 10V, R _L =2k Over Temperature	25		<u> </u>	25			V/mV
V _O	Output Voltage Swing	$V_S = \pm 15V, R_L = 10k$ $V_S = \pm 15V, R_L = 2k$	±12 ±10	±13 ±12		±12 ±10	±13 ±12		V

Symbol	Parameter		Conditions	_	LF155A/6A/7A				LF	355A	/6A/7A		
			Outditions	М	in	Тур	М	ax	Min	Тур		Max	Units
V _{CM}	Input Common-Mod Voltage Range	V _S = ± 15V		±	11	+ 15.1 - 12			±11	+ 1 -1			V
CMRR	Common-Mode Reje Ratio	ection		8:	5	100			85	10	0		dB
PSRR	Supply Voltage Reje Ratio	ction	(Note 6)	8	5	100			85	10	0		dB
AC E	lectrical Chara	cteri	Stics TA = T	i = 25	°C, V _S =	± 15V	<u>+</u>						·
					155A/3			156A/3		I E	157A/3	F74	
Symbol	Parameter	C	onditions	Min	Тур	Max	Min	Тур	Max	Min	Typ	Max	Units
SR	Slew Rate	LF155	5A/6A; A _V =1, 7A; A _V =5	3	5		10	12		40	50	Max	V/μs V/μs
GBW	Gain Bandwidth Product				2.5		4	4.5	_	15	20		V/μs MHz
ts	Settling Time to 0.01%	(Note	7)		4			1.5			1.5		μs
e _n	Equivalent Input Noise Voltage	R _S =100Ω f=100 Hz f=1000 Hz			25			15			15		nV/√Hz
in	Equivalent Input	f=100 Hz			0.01			0.01	\dashv		0.01		nV/√Hz pA/√Hz
C _{IN}	Noise Current Input Capacitance	f=1000 Hz			0.01			0.01			0.01		pA/√Hz
OIN	input Capacitance				3			3			3		pF
Symbol	_	Conditions					LF255/6/7 LF355B/6B/7B						
	Parameter	(Conditions		LF155/	6/7				ı	.F355/6	5/7	Units
				Min	LF155/(6/7 Max	LF:			Min	F355/6	5/7 Max	Units
	Input Offset Voltage	R _S =5	Conditions 0Ω, T _A = 25°C emperature	<u> </u>			LF:	355B/6	B/7B	<u> </u>	Т		mV
ΔV _{OS} /ΔT	Input Offset Voltage Average TC of Input Offset Voltage	R _S =5	0Ω, T _A =25°C emperature	<u> </u>	Тур	Max 5	LF:	355B/6	Max 5	<u> </u>	Тур	Max 10	
ΔV _{OS} /ΔT	Input Offset Voltage Average TC of Input Offset Voltage Change in Average TC with Vos Adjust	R _S =5	0Ω, T _A =25°C emperature	<u> </u>	Тур 3	Max 5	LF:	355B/6 Typ 3	Max 5	<u> </u>	Typ 3	Max 10	mV mV μV/°C
ΔV _{OS} /ΔT ΔTC/ΔV _{OS}	Input Offset Voltage Average TC of Input Offset Voltage Change in Average TC	R _S =5 Over1 R _S =5	0Ω, T _A = 25°C emperature 0Ω 0Ω, (Note 4)	<u> </u>	Typ 3	Max 5	LF:	355B/6 Typ 3	Max 5	<u> </u>	Typ 3	Max 10 13	mV mV μV/°C μV/°C per mV
ΔV _{OS} /ΔT ΔTC/ΔV _{OS}	Input Offset Voltage Average TC of Input Offset Voltage Change in Average TC with Vos Adjust	$R_{S} = 5$ Over 1 $R_{S} = 5$ $R_{S} = 5$ $T_{j} = 25$ $T_{j} \le T_{H}$ $T_{j} = 25$	0Ω, T _A = 25°C emperature 0Ω 0Ω, (Note 4) °C, (Notes 3, 5)	<u> </u>	3 5 0.5	Max 5 7	LF:	355B/6 Typ 3 5 0.5	5 6.5 20 1	<u> </u>	3 5 0.5	10 13 50 2	mV mV μV/°C μV/°C per mV pA nA
ΔTC/ΔV _{OS}	Input Offset Voltage Average TC of Input Offset Voltage Change in Average TC with V _{OS} Adjust Input Offset Current	$R_S = 5$ Over 1 $R_S = 5$ $R_S = 5$ $T_j = 25$ $T_j \le T_H$	0Ω , $T_A = 25^{\circ}$ C emperature 0Ω 0Ω , (Note 4) 0Ω , (Notes 3, 5) 0Ω	<u> </u>	5 0.5	90 20 100	LF:	355B/6i Typ 3 5 0.5	8/78 Max 5 6.5	<u> </u>	5 0.5 3	10 13 50 2	mV mV μV/°C μV/°C per mV pA nA
ΔV _{OS} /ΔT ΔTC/ΔV _{OS} OS B	Input Offset Voltage Average TC of Input Offset Voltage Change in Average TC with VOS Adjust Input Offset Current Input Bias Current	$\begin{array}{c} R_{S} = 5 \\ \text{Over 1} \\ R_{S} = 5 \\ \end{array}$ $\begin{array}{c} R_{S} = 5 \\ T_{j} \leq T_{H} \\ T_{j} \leq T_{H} \\ \end{array}$ $\begin{array}{c} T_{j} = 25 \\ T_{j} \leq T_{H} \\ \end{array}$ $\begin{array}{c} T_{j} = 25 \\ V_{S} = \pm \\ V_{O} = \pm \end{array}$	0Ω, T _A = 25°C emperature 0Ω 0Ω, (Note 4) °C, (Notes 3, 5) IGH °C, (Notes 3, 5) IGH °C 15V, T _A = 25°C 10V, R _L = 2k	Min 50	5 0.5 3	90 20 100	LF:	355B/6i Typ 3 5 0.5 3 30	5 6.5 20 1	<u> </u>	3 5 0.5 3	10 13 50 2	mV mV μV/°C μV/°C per mV pA nA
ΔV _{OS} /ΔT ΔTC/ΔV _{OS} OS BIN EVOL	Input Offset Voltage Average TC of Input Offset Voltage Change in Average TC with Vos Adjust Input Offset Current Input Bias Current Input Resistance Large Signal Voltage	$\begin{array}{c} R_{S} = 5 \\ \text{Over 1} \\ R_{S} = 5 \\ \end{array}$ $\begin{array}{c} R_{S} = 5 \\ T_{j} \leq T_{H} \\ T_{j} = 25 \\ T_{j} \leq T_{H} \\ \end{array}$ $\begin{array}{c} T_{j} = 25 \\ T_{j} \leq T_{H} \\ \end{array}$ $\begin{array}{c} V_{S} = \pm \\ V_{O} = \pm \\ \text{Over T} \\ \end{array}$	0Ω, T _A = 25°C emperature 0Ω 0Ω, (Note 4) °C, (Notes 3, 5) IGH °C, (Notes 3, 5) IGH °C 15V, T _A = 25°C 10V, R _L = 2k emperature	Min 50 25	3 5 0.5 3 30 10 ¹² 200	90 20 100	50 25	355B/6 Typ 3 5 0.5 3 30 1012 200	5 6.5 20 1	Min 25 15	5 0.5 3 1012 200	10 13 50 2	mV mV μV/°C per mV pA nA pA nA Ω V/mV
ATC/AVOS OS BIN EVOL	Input Offset Voltage Average TC of Input Offset Voltage Change in Average TC with VOS Adjust Input Offset Current Input Bias Current Input Resistance Large Signal Voltage Gain Output Voltage Swing	$\begin{array}{c} R_{S} = 5 \\ \text{Over 1} \\ R_{S} = 5 \\ \end{array}$ $\begin{array}{c} R_{S} = 5 \\ T_{j} \leq T_{H} \\ T_{j} = 25 \\ T_{j} \leq T_{H} \\ \end{array}$ $\begin{array}{c} T_{j} = 25 \\ T_{j} \leq T_{H} \\ \end{array}$ $\begin{array}{c} V_{S} = \pm \\ V_{O} = \pm \\ \text{Over T} \\ V_{S} = \pm \\ \end{array}$	0Ω, T _A = 25°C emperature 0Ω 0Ω, (Note 4) °C, (Notes 3, 5) IGH °C, (Notes 3, 5) IGH °C 15V, T _A = 25°C 10V, R _L = 2k	Min 50	3 5 0.5 3 30 1012 200 ±13 ±12	90 20 100	Min 50	355B/6 Typ 3 5 0.5 3 30 1012 200 ±13 ±12	5 6.5 20 1	Min 25	5 0.5 3 1012	10 13 50 2	mV mV/°C μV/°C per mV pA nA pA nA
ATC/AVOS OS BIN OVOL	Input Offset Voltage Average TC of Input Offset Voltage Change in Average TC with VOS Adjust Input Offset Current Input Bias Current Input Resistance Large Signal Voltage Gain Output Voltage Swing Input Common-Mode Voltage Range	$\begin{array}{c} R_{S} = 5 \\ \text{Over 1} \\ R_{S} = 5 \\ \end{array}$ $\begin{array}{c} R_{S} = 5 \\ T_{j} \leq T_{H} \\ T_{j} = 25 \\ T_{j} \leq T_{H} \\ \end{array}$ $\begin{array}{c} T_{j} = 25 \\ T_{j} \leq T_{H} \\ \end{array}$ $\begin{array}{c} V_{S} = \pm \\ V_{O} = \pm \\ \text{Over T} \\ V_{S} = \pm \\ \end{array}$	0Ω , $T_A = 25^{\circ}C$ Temperature 0Ω 0Ω , (Note 4) $0^{\circ}C$, (Notes 3, 5) IGH $0^{\circ}C$, (Notes 3, 5) IGH $0^{\circ}C$	Min 50 25 ±12	3 5 0.5 3 30 10 ¹² 200	90 20 100	50 25 ±12	355B/6 Typ 3 5 0.5 3 1012 200 ±13	5 6.5 20 1	25 15 ±12	3 5 0.5 3 30 1012 200	Max 10 13 50 2 200 8	mV mV μV/°C per mV pA nA pA nA Ω V/mV V/mV
VOS ΔVOS/ΔΤ ΔΤC/ΔVOS OS B Β ΒΙΝ ΦVOL	Input Offset Voltage Average TC of Input Offset Voltage Change in Average TC with Vos Adjust Input Offset Current Input Bias Current Input Resistance Large Signal Voltage Gain Output Voltage Swing Input Common-Mode Voltage Range Common-Mode Rejection Ratio	$\begin{array}{c} R_S = 5 \\ \text{Over 1} \\ R_S = 5 \\ \\ R_S = 5 \\ \\ R_S = 5 \\ \\ T_j \leq T_H \\ \\ T_j = 25 \\ \\ T_j \leq T_H \\ \\ T_j = 25 \\ \\ V_S = \pm \\ \\ V_O = \pm \\ \\ V_S = \pm \\ \\ V_S = \pm \\ \end{array}$	0Ω , $T_A = 25^{\circ}C$ Temperature 0Ω 0Ω , (Note 4) $0^{\circ}C$, (Notes 3, 5) IGH $0^{\circ}C$, (Notes 3, 5) IGH $0^{\circ}C$	50 25 ±12 ±10	Typ 3 5 0.5 3 30 1012 200 ±13 ±12 +15.1	90 20 100	50 25 ±12 ±10	355B/6 Typ 3 5 0.5 3 1012 200 ±13 ±12 ±15.1	5 6.5 20 1	25 15 ±12 ±10	3 5 0.5 3 30 1012 200 ±13 ±12 +15.1	Max 10 13 50 2 200 8	mV mV/°C μV/°C per mV pA nA pA nA Ω V/mV V/mV
AVOS/AT ATC/AVOS DS DS VOL O CM	Input Offset Voltage Average TC of Input Offset Voltage Change in Average TC with VOS Adjust Input Offset Current Input Bias Current Input Resistance Large Signal Voltage Gain Output Voltage Swing Input Common-Mode Voltage Range Common-Mode Rejec-	$\begin{array}{c} R_S = 5 \\ \text{Over 1} \\ R_S = 5 \\ \\ R_S = 5 \\ \\ R_S = 5 \\ \\ T_j \leq T_H \\ \\ T_j = 25 \\ \\ T_j \leq T_H \\ \\ T_j = 25 \\ \\ V_S = \pm \\ \\ V_O = \pm \\ \\ V_S = \pm \\ \\ V_S = \pm \\ \end{array}$	0Ω , $T_A = 25^{\circ}C$ emperature 0Ω 0Ω , (Note 4) 0Ω , (Notes 3, 5) IGH 0Ω °C, (Notes 3, 5) IGH 0Ω °C, (Notes 3, 5) IGH 0Ω °C, 0Ω 0 Ω 0	50 25 ±12 ±10	3 5 0.5 3 30 1012 200 ±13 ±12 +15.1 -12	90 20 100	50 25 ±12 ±10	355B/6 Typ 3 5 0.5 3 1012 200 ±13 ±12 ±15.1 -12	5 6.5 20 1	25 15 ±12 ±10 +10	3 5 0.5 3 30 1012 200 ±13 ±12 +15.1 -12	Max 10 13 50 2 200 8	mV mV μV/°C μV/°C per m\ pA nA nA nA V/mV V/mV V V

DC Electrical Characteristics $T_{\Delta} = T_i = 25^{\circ}\text{C}, V_{S} = \pm 15\text{V}$

Parameter	LF155A/155, LF255, arameter LF355A/355B		LF355		LF156A/156, LF256/356B		LF356A/356		LF157A/157 LF257/357B		LF357A/357		Units
	Тур	Max	Тур	Max	Тур	Max	Тур	Max	Тур	Max	Тур	Max	<u> </u>
Supply Current	2	4	2	4	5	7	5	10	5	7	5	10	mA

AC Electrical Characteristics $T_A = T_i = 25^{\circ}C$, $V_S = \pm 15V$

Symbol	Parameter	Conditions	LF155/255/ 355/355B	LF156/256, LF356B	LF156/256/ 356/356B	LF157/257, LF357B	LF157/257/ 357/357B	Units	
Syllido.			Тур	Min	Тур	Min	Тур		
SR	Slew Rate	LF155/6: A _V =1, LF157: A _V =5	5	7.5	12	30	50	V/μs V/μs	
GBW	Gain Bandwidth Product		2.5		5		20	MHz	
t _s	Settling Time to 0.01%	(Note 7)	4		1.5		1.5	μs	
e _n	Equivalent Input Noise Voltage	R _S = 100Ω f= 100 Hz f= 1000 Hz	25 20		15 12	· -	15 12	nV/√Hz nV/√Hz	
in	Equivalent Input Current Noise	f = 100 Hz f = 1000 Hz	0.01 0.01		0.01 0.01		0.01 0.01	pA/√Hz pA/√Hz	
C _{IN}	Input Capacitance		3		3	<u></u>	3	pF	

Notes for Electrical Characteristics

Note 1: The maximum power dissipation for these devices must be derated at elevated temperatures and is dictated by T_{JMAX}, θ_{JA}, and the ambient temperature, T_A. The maximum available power dissipation at any temperature is P_d=(T_{IMAX}-T_A)/θ_{IA} or the 25°C P_{dMAX}, whichever is less.

Note 2: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.

Note 3: Unless otherwise stated, these test conditions apply:

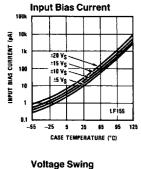
	LF155A/6A/7A LF155//6/7	LF255//6/7	LF355A/6A/7A	LF355B/6B/7B	LF355//6/7
Supply Voltage, V _S T _A T _{HIGH}	±15V≤V _S ≤±20V	$\pm 15V \le V_S \le \pm 20V$	±15V≤V _S ≤±18V	±15V≤V _S ±20V	V _S = ±15V
	-55°C≤T _A ≤+125°C	-25°C \le T_A \le +85°C	0°C≤T _A ≤+70°C	0°C≤T _A ≤+70°C	0°C≤T _A ≤+70°C
	+125°C	+85°C	+70°C	+70°C	+70°C

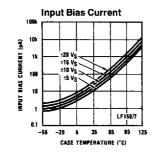
and V_{OS} , I_B and I_{OS} are measured at $V_{CM} = 0$.

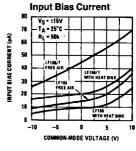
Note 4: The Temperature Coefficient of the adjusted input offset voltage changes only a small amount (0.5μV/°C typically) for each mV of adjustment from its original unadjusted value. Common-mode rejection and open loop voltage gain are also unaffected by offset adjustment.

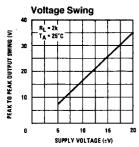
Note 5: The input bias currents are junction leakage currents which approximately double for every 10°C increase in the junction temperature, T_J. Due to limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, Pd. $T_j = T_A + \theta_{jA}$ Pd where θ_{jA} is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.

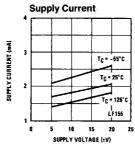
Note 6: Supply Voltage Rejection is measured for both supply magnitudes increasing or decreasing simultaneously, in accordance with common practice.

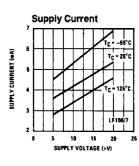

Note 7: Settling time is defined here, for a unity gain inverter connection using 2 kn resistors for the LF155/6. It is the time required for the error voltage (the voltage at the inverting input pin on the amplifier) to settle to within 0.01% of its final value from the time a 10V step input is applied to the inverter. For the LF157, $A_V = -5$, the feedback resistor from output to input is 2 k Ω and the output step is 10V (See Settling Time Test Circuit).

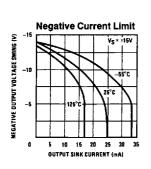

Note 8: Refer to RETS155AX for LF155A, RETS155X for LF155, RETS156AX for LF156A, RETS156X for LF156A, RETS157A for LF157A and RETS157X for LF157 military specifications.

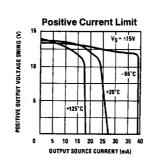

Note 9: Max. Power Dissipation is defined by the package characteristics. Operating the part near the Max. Power Dissipation may cause the part to operate outside guaranteed limits.

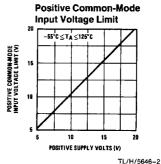

Typical DC Performance Characteristics

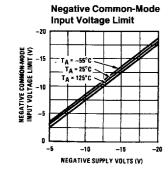

Curves are for LF155, LF156 and LF157 unless otherwise specified.

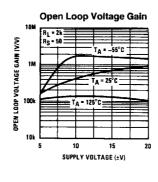


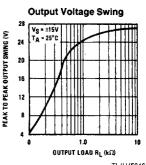


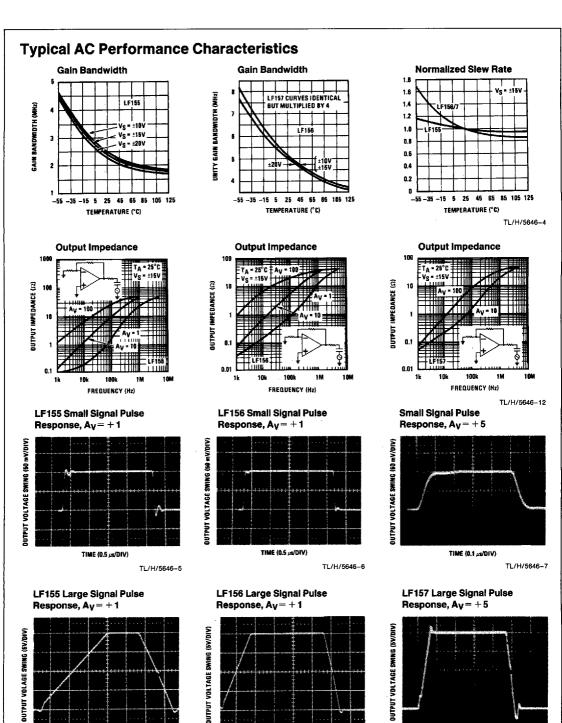




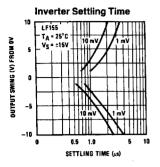


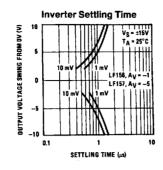


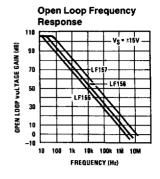


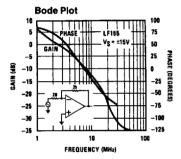


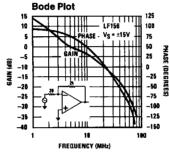
TIME (1 µs/DIV)

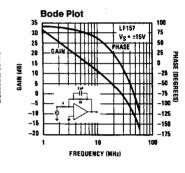

TL/H/5646-9

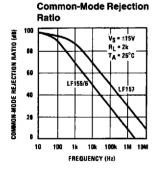

(UIV)عبر 0.5 TIME

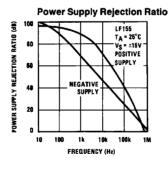

TL/H/5646-10

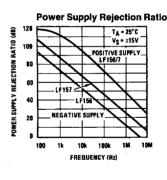

(DIV)هر TIME (1

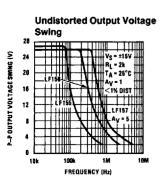

Typical AC Performance Characteristics (Continued)

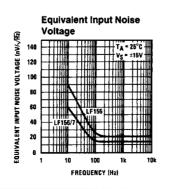


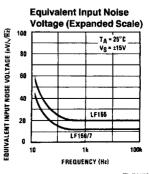


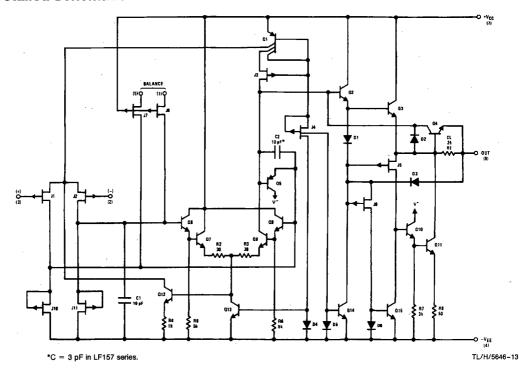






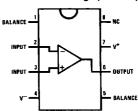






Detailed Schematic

Connection Diagrams (Top Views)


Metal Can Package (H)

TL/H/5646-14

Order Number LF156AH, LF155H, LF156H, LF255H, LF256H, LF257H, LF355AH, LF356AH, LF357AH, LF356BH, LF355H, LF356H, LF357H, LM155AH/883, LM155H/883, LM156AH/883, LM156H/883, LM157AH/883 or LM157H/883* See NS Package Number H08C

Dual-In-Line Package (M and N)

TL/H/5646-29

Order Number LF355M, LF356M, LF357M, LF355BM, LF356BM, LF355BN, LF356BN, LF357BN, LF355N, LF356N or LF357N See NS Package Number M08A or N08E

^{*}Available per JM38510/11401 or JM38510/11402

Application Hints

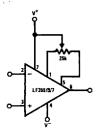
The LF155/6/7 series are op amps with JFET input devices. These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore large differential input voltages can easily be accomodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit.

Exceeding the negative common-mode limit on either input will force the output to a high state, potentially causing a reversal of phase to the output. Exceeding the negative common-mode limit on both inputs will force the amplifier output to a high state. In neither case does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode.

Exceeding the positive common-mode limit on a single input will not change the phase of the output however, if both inputs exceed the limit, the output of the amplifier will be forced to a high state.

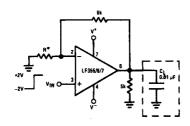
These amplifiers will operate with the common-mode input voltage equal to the positive supply. In fact, the common-mode voltage can exceed the positive supply by approximately 100 mV independent of supply voltage and over the full operating temperature range. The positive supply can therefore be used as a reference on an input as, for example, in a supply current monitor and/or limiter.

Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.


All of the bias currents in these amplifiers are set by FET current sources. The drain currents for the amplifiers are therefore essentially independent of supply voltage.

As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pickup" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.

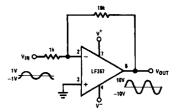
A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to ac ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately six times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.


Typical Circuit Connections

V_{OS} Adjustment

- V_{OS} is adjusted with a 25k potentiometer
- The potentiometer wiper is connected to V+
- For potentiometers with temperature coefficient of 100 ppm/°C or less the additional drift with adjust is $\approx 0.5 \ \mu\text{V/°C/mV}$ of adjustment
- Typical overall drift: 5 μV/°C ± (0.5 μV/°C/mV of adj.)

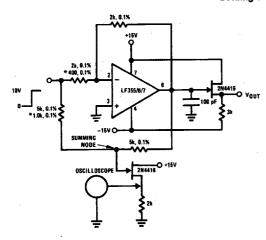
Driving Capacitive Loads


*LF155/6 R=5k LF157 R=1.25k

Due to a unique output stage design, these amplifiers have the ability to drive large capacitive loads and still maintain stability. $C_{L(MAX)} \simeq 0.01$ μF .

Overshoot ≤ 20%

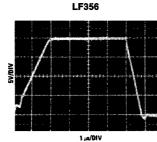
Settling time (t_8) \cong 5 μs


LF157. A Large Power BW Amplifier

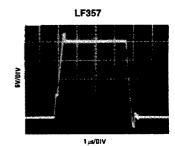
TL/H/5646-15 For distortion \leq 1% and a 20 Vp-p V_OUT swing, power bandwidth is: 500 kHz.

Typical Applications


Settling Time Test Circuit

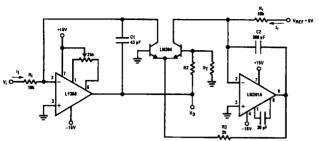

- Settling time is tested with the LF155/6 connected as unity gain inverter and LF157 connected for
- $A_{V} = -5$ FET used to isolate the probe capacitance
- Output = 10V step
- = -5 for LF157

TL/H/5646-16


Large Signal Inverter Output, VOUT (from Settling Time Circuit)

TL/H/5646-17

TL/H/5646-18

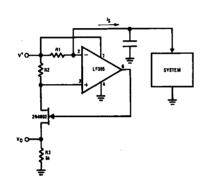


TL/H/5646-19

Low Drift Adjustable Voltage Reference

- V_{OUT} = 10¥
- Δ V_{OUT}/ΔT = ±0.002%/°C All resistors and potentiometers should be wire-wound
- P1: drift adjust P2: VOUT adjust
- Use LF155 for = Low I_B
 - Low drift
 - Low supply current

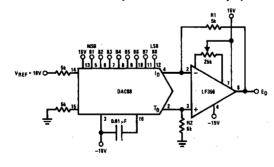
Fast Logarithmic Converter



- Dynamic range: 100 μ A \leq I $_{i}$ \leq 1 mA (5 decades), $|V_{O}|$ = 1V/decade
- Transient response: 3 μs for Δl_i= 1 decade
- C1, C2, R2, R3: added dynamic compensation
- V_{OS} adjust the LF156 to minimize quiescent error
 R_T: Tel Labs type Q81 + 0.3%/°C

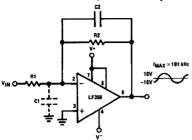
TL/H/5646-21

$$|V_{OUT}| = \left[1 + \frac{R2}{R_T}\right] \frac{kT}{q} \ln V_i \left[\frac{R_r}{V_{REF\,Ri}}\right] = \log V_i \frac{1}{R_i l_r} R2 = 15.7 k, R_T = 1 k, 0.3 \% / ^{\circ} C \text{ (for temperature compensation)}$$

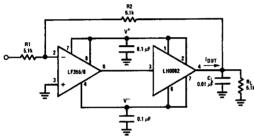

Precision Current Monitor

- V_O=5 R1/R2 (V/mA of I_S)
- R1, R2, R3; 0.1% resistors
- Use LF155 for
- Common-mode range to supply range
- Low I_B
- Low Vos
- Low Supply Current

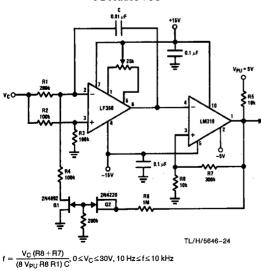
8-Bit D/A Converter with Symmetrical Offset Binary Operation


TL/H/5646-31

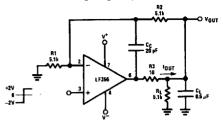
- R1, R2 should be matched within ±0.05%
- Full-scale response time: 3μs


Eo	B1	B2	B 3	B4	В5	В6	B 7	B 8	Comments
+9.920	1	1	1	1	1	1	1	1	Positive Full-Scale
+0.040	1	0	0	0	0	0	0	0	(+) Zero-Scale
-0.040	0	1	1	1	1	1	1	1	(-) Zero-Scale
-9.920	0	0	0	0	0	0	0	0	Negative Full-Scale

Wide BW Low Noise, Low Drift Amplifier


- Power BW: $f_{MAX} = \frac{S_r}{2\pi V_p} \approx 191 \text{ kHz}$
- Parasitic input capacitance C1 ≈ (3 pF for LF155, LF156 and LF157 plus any additional layout capacitance) interacts with feedback elements and creates undesirable high frequency pole. To compensate add C2 such that: B2 C2 ≈ R1 C1.

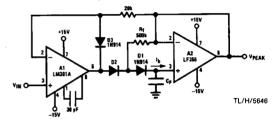
Boosting the LF156 with a Current Amplifier


- $I_{OUT(MAX)} \approx 150 \text{ mA (will drive } H_L \ge 100\Omega)$
- $\frac{\Delta V_{OUT}}{\Delta T} = \frac{0.15}{10^{-2}} V/\mu s$ (with C_L shown)
- . No additional phase shift added by the current amplifier

3 Decades VCO

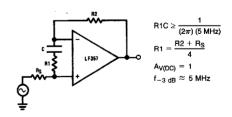
R1, R4 matched. Linearity 0.1% over 2 decades.

Isolating Large Capacitive Loads

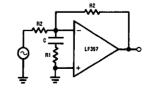

Overshoot 6%

TL/H/5646-22

- t_s 10 μs
- \bullet When driving large $C_L,$ the V_{OUT} slew rate determined by C_L and $I_{OUT(MAX)}$


$$\frac{\Delta V_{OUT}}{\Delta T} = \frac{I_{OUT}}{C_{L}} \cong \frac{0.02}{0.5} \, \text{V/} \mu \text{s} = 0.04 \, \text{V/} \mu \text{s} \, (\text{with C}_{L} \, \text{shown})$$

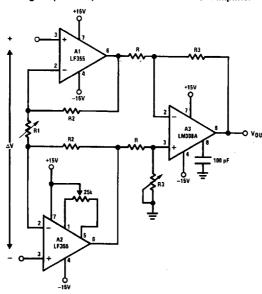
Low Drift Peak Detector



- By adding D1 and R_{ft}, V_{D1}=0 during hold mode. Leakage of D2 provided by feedback path through R_{ft}.
- Leakage of circuit is essentially I_b (LF155, LF156) plus capacitor leakage of Cp.
- Diode D3 clamps V_{OUT} (A1) to V_{IN}-V_{D3} to improve speed and to limit reverse bias of D2.
- Maximum input frequency should be << $\gamma_2\pi R_1 C_{D2}$ where C_{D2} is the shunt capacitance of D2.

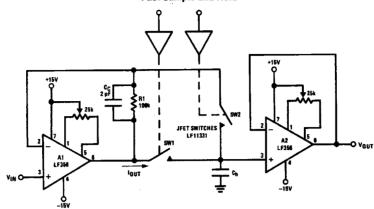
Non-Inverting Unity Gain Operation for LF157

Inverting Unity Gain for LF157


R1C $\geq \frac{1}{(2\pi)(5 \text{ MHz})}$ R1 = $\frac{R2}{4}$ Av(DC) = -1

f_{-3 dB} ≈ 5 MHz

TL/H/5646-26


Typical Applications (Continued)

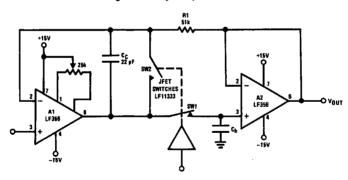
High Impedance, Low Drift Instrumentation Amplifier

- $V_{OLIT} = \frac{R3}{\pi} \left[\frac{2R2}{2R} + 1 \right] \Delta V, V^- + 2V \le V_{IN} \text{ common-mode } \le V^+$
- System V_{OS} adjusted via A2 V_{OS} adjust
- Trim R3 to boost up CMRR to 120 dB. Instrumentation amplifier resistor array recommended for best accuracy and lowest drift

Fast Sample and Hold

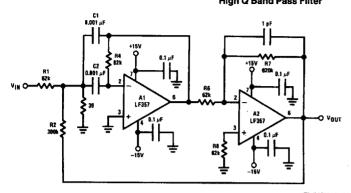
TL/H/5646-33

- Both amplifiers (A1, A2) have feedback loops individually closed with stable responses (overshoot negligible)
- · Acquisition time TA, estimated by:


$$T_A \simeq \left[\frac{2R_{ON}, V_{IN}, C_h}{S_r}\right]^{\frac{1}{2}}$$
 provided that:

$$\begin{split} V_{IN} &< 2\pi S_r \, R_{ON} \, C_h \, \text{and} \, T_A > \frac{V_{IN} \, C_h}{I_{OUT(MAX)}}, R_{ON} \, \text{is of SW1} \\ \text{If inequality not satisfied: } T_A &\simeq \frac{V_{IN} \, C_h}{20 \, \text{mA}}. \end{split}$$

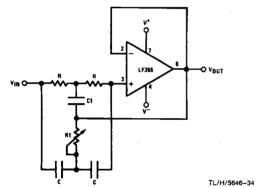
finequality not satisfied:
$$T_A \simeq \frac{V_{IN} C_h}{20 \text{ m/s}}$$


- \bullet LF156 develops full S_r output capability for $V_{IN}\!\ge\!1V$
- · Addition of SW2 improves accuracy by putting the voltage drop across SW1 inside the feedback loop
- . Overall accuracy of system determined by the accuracy of both amplifiers, A1 and A2

High Accuracy Sample and Hold

- . By closing the loop through A2, the VOUT accuracy will be determined uniquely by A1. No VOS adjust required for A2.
- . TA can be estimated by same considerations as previously but, because of the added propagation delay in the feedback loop (A2) the overshoot is not negligible.
- · Overall system slower than fast sample and hold
- R1, C_C: additional compensation
- Use LF156 for
 - Fast settling time
 - Low Vos

High Q Band Pass Filter


- By adding positive feedback (R2)
 Q increases to 40
- f_{BP}=100 kHz

 $\frac{V_{OUT}}{V_{IN}} = 10\sqrt{Q}$

 Clean layout recommended
 Response to a 1 Vp-ρ tone burst: 300 μs

TL/H/5646-28

High Q Notch Filter

- 2R1 = R = 10 MΩ 2C = C1 = 300 pF
- Capacitors should be matched to obtain high Q
- f_{NOTCH} = 120 Hz, notch = -55 dB, Q > 100
- Use LF155 for
- Low I_B
- Low supply current