National Semiconductor is now part of Texas Instruments.

Search http://www.ti.com/ for the latest technical information and details on our current products and services.

LP2950/LP2951 Series of Adjustable Micropower Voltage Regulators

General Description

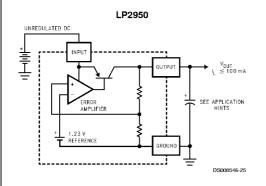
The LP2950 and LP2951 are micropower voltage regulators with very low quiescent current (75 μ A typ.) and very low dropout voltage (typ. 40 mV at light loads and 380 mV at 100 mA). They are ideally suited for use in battery-powered systems. Furthermore, the quiescent current of the LP2950/LP2951 increases only slightly in dropout, prolonging battery life.

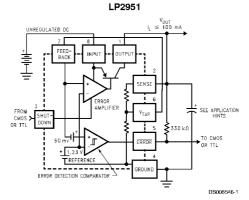
The LP2950-5.0 in the popular 3-pin TO-92 package is pin-compatible with older 5V regulators. The 8-lead LP2951 is available in plastic, ceramic dual-in-line, or metal can packages and offers additional system functions.

One such feature is an error flag output which warns of a low output voltage, often due to falling batteries on the input. It may be used for a power-on reset. A second feature is the logic-compatible shutdown input which enables the regulator to be switched on and off. Also, the part may be pin-strapped for a 5V, 3V, or 3.3V output (depending on the version), or programmed from 1.24V to 29V with an external pair of resistors.

Careful design of the LP2950/LP2951 has minimized all contributions to the error budget. This includes a tight initial tol-

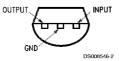
erance (.5% typ.), extremely good load and line regulation (.05% typ.) and a very low output voltage temperature coefficient, making the part useful as a low-power voltage reference.

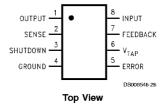

Features


- 5V, 3V, and 3.3V versions available
- High accuracy output voltage
- Guaranteed 100 mA output current
- Extremely low quiescent current
- Low dropout voltage
- Extremely tight load and line regulation
- Very low temperature coefficient
- Use as Regulator or Reference
- Needs minimum capacitance for stability
- Current and Thermal Limiting

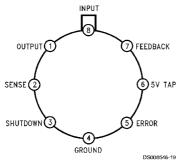
LP2951 versions only

- Error flag warns of output dropout
- Logic-controlled electronic shutdown
- Output programmable from 1.24 to 29V


Block Diagram and Typical Applications

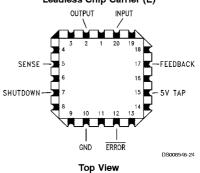

Connection Diagrams

TO-92 Plastic Package (Z)



Bottom View

Dual-In-Line Packages (N, J) Surface-Mount Package (M, MM)



Metal Can Package (H)

Top View

Leadless Chip Carrier (E)

Ordering Information

Package		Temperature					
	3.0V	3.3V	5.0V	(°C)			
TO-92 (Z)	LP2950ACZ-3.0	LP2950ACZ-3.3	LP2950ACZ-5.0	-40 < T _J < 125			
	LP2950CA-3.0	LP2950CZ-3.3	LP2950CZ-5.0				
N (N-08E)	LP2951ACN-3.0	LP2951ACN-3.3	LP2951ACN	–40 < T _J < 125			
	LP2951CN-3.0	LP2951CN-3.3	LP2950CN				
M (M08A)	LP2951ACM-3.0	LP2951ACM-3.3	LP2951ACM	-40 < T _J < 125			
	LP2951CM-3.0	LP2951CM-3.3	LP2951CM				
(A80AUM) MM	LP2951ACMM-3.0	LP2951ACMM-3.3	LP2951ACMM	–40 < T _J < 125			
	LP2951CMM-3.0	LP2951CMM-3.3	LP2951CMM				
J (J08A)			LP2951ACJ	-40 < T _J < 125			
			LP2951CJ				
			LP2951J	–55 < T _J < 150			
			LP2951J/883				
			5926-3870501MPA				
H (H08C)			LP2951H/883	-55 < T _J < 150			
			5962-3870501MGA				
E (E20A)			LP2951E/883	–55 < T _J < 150			
			5962-3870501M2A				

For MM Package:

Order Number	Package Marking
LP2951ACMM	L0DA
LP2951CMM	LODB
LP2951ACMM-3.3	L0CA
LP2951CMM-3.3	L0CB
LP2951ACMM-3.0	L0BA
LP2951CMM-3.0	L0BB

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Input Supply Voltage -0.3 to +30V

SHUTDOWN Input Voltage, Error Comparator Output Voltage, (Note 9)

FEEDBACK Input Voltage -1.5 to +30V

(Note 9) (Note 10)

Power Dissipation Internally Limited Junction Temperature (T_J) +150°C Ambient Storage Temperature -65° to +150°C

Junction Temperature Range (T_J) (Note 8)

Vapor Phase

ESD

LP2951

LP2950AC-XX, LP2950C-XX, LP2951AC-XX, LP2951C-XX

Maximum Input Supply Voltage

Soldering Dwell Time, Temperature Wave Infrared 4 seconds, 260°C 10 seconds, 240°C 75 seconds, 219°C TBD

Operating Ratings (Note 1)

–55° to +150°C

-40° to +125°C

30V

Electrical Characteristics(Note 2)

	Conditions	LP2951		LP2950AC-XX						
Parameter				LP2951AC-XX			LP2951C-XX			
			Tested		Tested	Design		Tested	Design	Units
	(Note 2)	Тур	Limit	Тур	Limit	Limit	Тур	Limit	Limit	
			(Notes 3, 16)		(Note 3)	(Note 4)		(Note 3)	(Note 4)	
3V VERSIONS (Note 17	7)									
Output Voltage	T _J = 25°C	3.0	3.015	3.0	3.015		3.0	3.030		V max
			2.985		2.985			2.970		V min
	-25°C ≤ T _J ≤ 85°C	3.0		3.0		3.030	3.0		3.045	V max
						2.970			2.955	V min
	Full Operating	3.0	3.036	3.0		3.036	3.0		3.060	V max
	Temperature Range		2.964			2.964			2.940	V min
Output Voltage	100 μA ≤ I _L ≤ 100 mA	3.0	3.045	3.0		3.042	3.0		3.072	V max
	$T_{J} \leq T_{JMAX}$		2.955			2.958			2.928	V min
3.3V VERSIONS (Note	17)									
Output Voltage	$T_J = 25^{\circ}C$	3.3	3.317	3.3	3.317		3.3	3.333		V max
			3.284		3.284			3.267		V min
	$-25^{\circ}\text{C} \le \text{T}_{\text{J}} \le 85^{\circ}\text{C}$	3.3		3.3		3.333	3.3		3.350	V max
						3.267			3.251	V min
	Full Operating	3.3	3.340	3.3		3.340	3.3		3.366	V max
	Temperature Range		3.260			3.260			3.234	V min
Output Voltage	100 μA ≤ I _L ≤ 100 mA	3.3	3.350	3.3		3.346	3.3		3.379	V max
	$T_J \le T_{JMAX}$		3.251			3.254			3.221	V min
5V VERSIONS (Note 17	7)									
Output Voltage	$T_J = 25^{\circ}C$	5.0	5.025	5.0	5.025		5.0	5.05		V max
			4.975		4.975			4.95		V min
	$-25^{\circ}\text{C} \le \text{T}_{\text{J}} \le 85^{\circ}\text{C}$	5.0		5.0		5.05	5.0		5.075	V max
						4.95			4.925	V min
	Full Operating	5.0	5.06	5.0		5.06	5.0		5.1	V max
	Temperature Range		4.94			4.94			4.9	V min
Output Voltage	100 μ A ≤ I _L ≤ 100 mA	5.0	5.075	5.0		5.075	5.0		5.12	V max
	$T_J \le T_{JMAX}$		4.925			4.925			4.88	V min
ALL VOLTAGE OPTIO	NS									
Output Voltage Temperature Coefficient		20	120	20		100	50		150	ppm/°C
Line Regulation (Note 14)	(V _O NOM + 1)V ≤ V _{in} ≤ 30V (Note 15)	0.03	0.1	0.03	0.1		0.04	0.2		% max
(14016-14)			0.5			0.2			0.4	% max
Load Regulation (Note 14)	100 μ A \leq I _L \leq 100 mA	0.04	0.1	0.04	0.1		0.1	0.2		% max
(14016-14)		1	0.3	l		0.2	l		0.3	% max

Conditions (Note 2) 100 μA 100 μA 100 μA 100 μA 100 μA 100 μA = (V _O NOM – 0.5)V 100 μA = 0 te 13) = 1 μF (5V Only) = 200 μF = 3.3 μF pass = 0.01 μF	50 380 75 8 110 160 0.05 430 160	Tested Limit (Notes 3, 16) 80 150 450 600 120 140 12 14 170 200 200 220 0.2	50 380 75 8 110	Tested Limit (Note 3) 80 450 120 12 170 200	150 600 140 200	50 380 75 8	80 450 120 170	Design Limit (Note 4) 150 600 140	mV ma mV ma mV ma mV ma µA max µA max mA ma
100 mA 100 mA 100 mA = (V _O NOM - 0.5)V 100 μA = 0 te 13) = 1 μF (5V Only) = 200 μF = 3.3 μF pass = 0.01 μF	380 75 8 110 160 0.05 430	80 150 450 600 120 140 12 14 170 200 200 220	380 75 8	80 450 120 12 170	150 600 140 14	380 75 8	80 450 120	150 600 140	mV ma mV ma mV ma μA ma: μA ma: mA ma
100 mA 100 mA 100 mA = (V _O NOM - 0.5)V 100 μA = 0 te 13) = 1 μF (5V Only) = 200 μF = 3.3 μF pass = 0.01 μF	380 75 8 110 160 0.05 430	150 450 600 120 140 12 14 170 200 200 220	380 75 8	450 120 12 12	140 14	380 75 8	450 120	600 140	mV ma mV ma mV ma μA ma: μA ma: mA ma
100 µA 100 mA = (V _O NOM - 0.5)V 100 µA = 0 te 13) = 1 µF (5V Only) = 200 µF = 3.3 µF pass = 0.01 µF	380 75 8 110 160 0.05 430	450 600 120 140 12 14 170 200 200 220	380 75 8	120 12 170	140 14	380 75 8	120	600 140	mV ma mV ma μA ma μA ma mA ma
100 µA 100 mA = (V _O NOM - 0.5)V 100 µA = 0 te 13) = 1 µF (5V Only) = 200 µF = 3.3 µF pass = 0.01 µF	75 8 110 160 0.05 430	120 140 12 14 12 14 170 200 200 220	75 8 110	120 12 170	140 14	75 8	120	140	mV ma μA ma μA ma mA ma mA ma
100 mA = (V _O NOM - 0.5)V 100 µA = 0 le 13) = 1 µF (5V Only) = 200 µF = 3.3 µF pass = 0.01 µF	75 8 110 160 0.05 430	120 140 12 14 170 200 200 220	75 8 110	12 170	140 14	75 8	12	140	μA ma μA ma mA ma mA ma
100 mA = (V _O NOM - 0.5)V 100 µA = 0 le 13) = 1 µF (5V Only) = 200 µF = 3.3 µF pass = 0.01 µF	8 110 160 0.05 430	140 12 14 170 200 200 220	8	12 170	14	8	12		μA ma mA ma mA ma
= (V _O NOM - 0.5)V 100 µA = 0 te 13) = 1 µF (5V Only) = 200 µF = 3.3 µF pass = 0.01 µF	110 160 0.05 430	12 14 170 200 200 220	110	170	14				mA ma mA ma
= (V _O NOM - 0.5)V 100 µA = 0 te 13) = 1 µF (5V Only) = 200 µF = 3.3 µF pass = 0.01 µF	110 160 0.05 430	14 170 200 200 220	110	170				14	mA ma
100 μA = 0 le 13) = 1 μF (5V Only) = 200 μF = 3.3 μF pass = 0.01 μF	160 0.05 430	170 200 200 220				110	170	14	
100 μA = 0 le 13) = 1 μF (5V Only) = 200 μF = 3.3 μF pass = 0.01 μF	160 0.05 430	200 200 220			200	110	170		IIA ma
e 13) = 1 μF (5V Only) = 200 μF = 3.3 μF pass = 0.01 μF	0.05 430	200 220	160	200	200				pr. 111a
te 13) = 1 µF (5V Only) = 200 µF = 3.3 µF pass = 0.01 µF	0.05 430	220	160	200				200	μA ma
= 1 μF (5V Only) = 200 μF = 3.3 μF pass = 0.01 μF	430					160	200		mA ma
= 1 μF (5V Only) = 200 μF = 3.3 μF pass = 0.01 μF	430	0.2			220			220	mA ma
= 200 μF = 3.3 μF pass = 0.01 μF			0.05	0.2		0.05	0.2		%/ W ma
= 3.3 μF pass = 0.01 μF	160		430			430			μV rm
pass = 0.01 μF			160			160			μV rm
									İ
	100		100			100			μV rm
7 to 1 (LP2951))									
8-PIN VERSIONS ONLY Reference		LP2951		LP2951AC-XX		LP2951C-XX			
	1.235	1.25	1.235	1.25		1.235	1.26		V max
					1.26			1.27	V max
				1.22			1.21		V mir
									V mir
te 7)									V max
					1.19			1.185	V mir
	20		20	40		20	40		nA ma
	+	60			60			60	nA ma
te 12)	20		20			50			ppm/°
			0.4			0.4			1.00
	0.1		0.1			0.1			nA/°C
									İ
- 301/	I 0 01 I	1	0.01	1 1		0.01	1		μA ma
- 30 v	0.01		0.01	'	,	0.01	'	,	μA ma
- (V-NOM - 0.5)V	150		150	250		150	250		mV ma
	130		150	250	400	150	250	400	mV ma
	60		60	40	400	60	40	400	mV mi
	"			"	25		10	25	mV mi
te 6)	75		75	95		75	95		mV ma
	'~		, ,	"	140			140	mV ma
te 6)	15	. 10	15		. 10	15		. 10	mV
· ,	1			I					
	1.3		1.3			1.3			Ιv
(Regulator ON)		0.6			0.7			0.7	V max
									V mir
	e 7) e 12) = 30V = (V ₀ NOM – 0.5)V = 400 µA e 6) e 6) e 6) (Regulator ON) n (Regulator OFF)	20 e 12) 20	1.19 20 40 60 60	1.22 1.2 e 7) 1.19 20 40 20 60 e 12) 20 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.27 1.19 1.19 1.19 1.19 1.19 1.19 1.19 1.20	1.22 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	1.22 1.22 1.22 1.22 1.2 1.2 e 7) 1.19 1.19 1.19 20 40 20 40 60 60 60 60 60 60 60 60 60 60 60 60 60	1.22 1.22 1.21 1.2 1.2 1.21 1.2 1.2 1.2 1.2 1.27 1.19 1.19 1.19 20	1.22 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2

Electrical Characteristics(Note 2) (Continued)

Parameter	Conditions (Note 2)	LP2951		LP2950AC-XX LP2951AC-XX			LP2950C-XX LP2951C-XX			
			Tested		Tested	Design		Tested	Design	Units
		Тур	Limit	Тур	Limit	Limit	Тур	Limit	Limit	
			(Notes 3, 16)		(Note 3)	(Note 4)		(Note 3)	(Note 4)	
Shutdown Input	•									
Shutdown Pin Input Current	V _{shutdown} = 2.4V	30	50	30	50		30	50		μ A max
			100			100			100	μA max
	V _{shutdown} = 30V	450	600	450	600		450	600		μA max
			750			750			750	μA max
Regulator Output Current in Shutdown	(Note 11)	3	10	3	10		3	10		μ A max
			20			20			20	μ A max

Note 1: Absolute Maximum Ratings are limits beyond which damage to the device may occur. Operating Ratings are conditions under which operation of the device is guaranteed. Operating Ratings do not imply guaranteed performance limits. For guaranteed performance limits and associated test conditions, see the Electrical Characteristics tables.

Note 2: Unless otherwise specified all limits guaranteed for $V_{IN} = (V_{ONOM} + 1)V$, $I_L = 100 \ \mu A$ and $C_L = 1 \ \mu F$ for 5V versions and 2.2 μF for 3V and 3.3V versions. Limits appearing in **boldface** type apply over the entire junction temperature range for operation. Limits appearing in normal type apply for $T_A = T_J = 25$ °C. Additional conditions for the 8-pin versions are FEEDBACK tied to V_{TAP} , OUTPUT tied to SENSE, and $V_{SHUTDOWN} \le 0.8V$.

Note 3: Guaranteed and 100% production tested.

Note 4: Guaranteed but not 100% production tested. These limits are not used to calculate outgoing AQL levels.

Note 5: Dropout Voltage is defined as the input to output differential at which the output voltage drops 100 mV below its nominal value measured at 1V differential. At very low values of programmed output voltage, the minimum input supply voltage of 2V (2.3V over temperature) must be taken into account.

Note 6: Comparator thresholds are expressed in terms of a voltage differential at the Feedback terminal below the nominal reference voltage measured at V_{in} = (V_ONOM + 1)V. To express these thresholds in terms of output voltage change, multiply by the error amplifier gain = V_{out}V_{ref} = (R1 + R2)/R2.

Thresholds remain constant as a percent of V_{out} as V_{out} is varied, with the dropout warning occurring at typically 5% below nominal, 7.5% guaranteed.

Note 7: $V_{ref} \le V_{out} \le (V_{in} - 1V), \ 2.3V \le V_{in} \le 30V, \ 100 \ \mu A \le I_L \le 100 \ mA, \ T_J \le T_{JMAX}$

Note 8: The junction-to-ambient thermal resistances are as follows: 180°C/W and 160°C/W for the TO-92 package with 0.40 inch and 0.25 inch leads to the printed circuit board (PCB) respectively, 105°C/W for the molded plastic DIP (N), 130°C/W for the ceramic DIP (J), 160°C/W for the molded plastic SOP (M), 200°C/W for the molded plastic MSOP (MM), 160°C/W for the metal can package (H), and 180°C/W for the leadless chip carrier (E). The above thermal resistances for the N, J, M, MM, and E packages apply when the package is soldered directly to the PCB. Junction-to-case thermal resistances for the E and H packages are 24°C/W and 20°C/W respectively.

Note 9: May exceed input supply voltage.

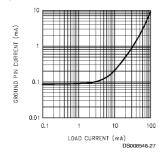
Note 10: When used in dual-supply systems where the output terminal sees loads returned to a negative supply, the output voltage should be diode-clamped to ground.

Note 11: $V_{shutdown} \ge 2V$, $V_{in} \le 30V$, V_{out} = 0, Feedback pin tied to V_{TAP} .

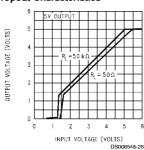
Note 12: Output or reference voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.

Note 13: Thermal regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied, excluding load or line regulation effects. Specifications are for a 50 mA load pulse at V_{IN} = 30V (1.25W pulse) for T = 10 ms.

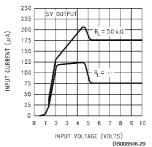
Note 14: Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to heating effects are covered under the specification for thermal regulation.

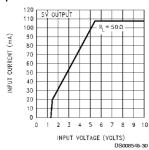

Note 15: Line regulation for the LP2951 is tested at 150°C for $I_L = 1$ mA. For $I_L = 100$ μ A and $T_J = 125$ °C, line regulation is guaranteed by design to 0.2%. See Typical Performance Characteristics for line regulation versus temperature and load current.

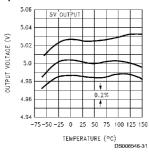
Note 16: A Military RETS spec is available on request. At time of printing, the LP2951 RETS spec complied with the boldface limits in this column. The LP2951H, E, or J may also be procured as Standard Military Drawing Spec #5962-3870501MGA, M2A, or MPA.

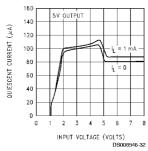

Note 17: All LP2950 devices have the nominal output voltage coded as the last two digits of the part number. In the LP2951 products, the 3.0V and 3.3V versions are designated by the last two digits, but the 5V version is denoted with no code at this location of the part number (refer to ordering information table).

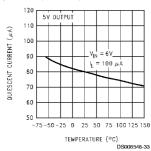
Typical Performance Characteristics

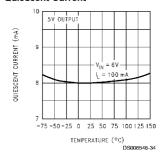

Quiescent Current

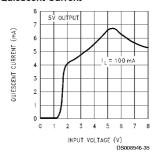

Dropout Characteristics

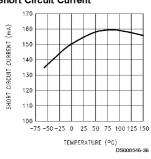

Input Current

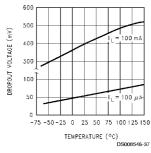

Input Current

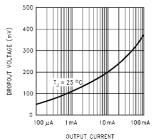

Output Voltage vs. Temperature of 3 Representative Units


Quiescent Current

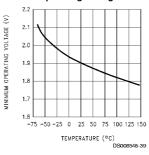

Quiescent Current


Quiescent Current


Quiescent Current

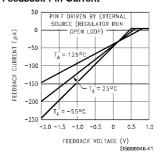

Short Circuit Current

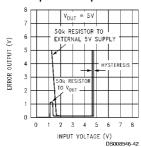
Dropout Voltage

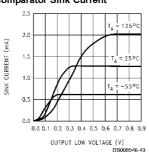


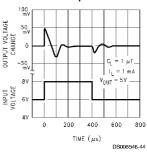
Dropout Voltage

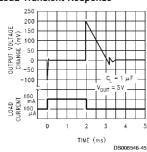
Typical Performance Characteristics (Continued)

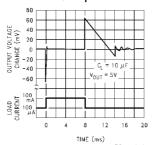

LP2951 Minimum Operating Voltage

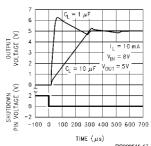

LP2951 Feedback Bias Current


LP2951 Feedback Pin Current

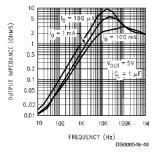

LP2951 Error Comparator Output


LP2951 Comparator Sink Current

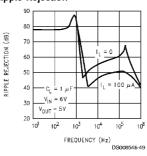

Line Transient Response


Load Transient Response

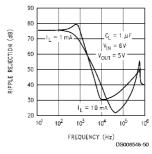
Load Transient Response

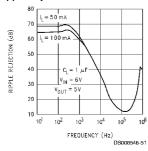


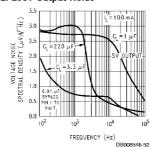
LP2951 Enable Transient

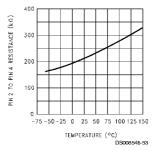


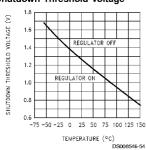
Typical Performance Characteristics (Continued)

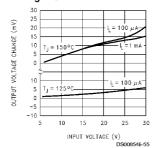

Output Impedance

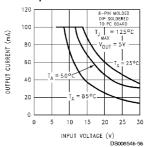

Ripple Rejection

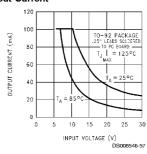

Ripple Rejection

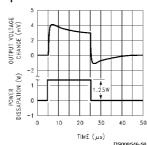

Ripple Rejection


LP2951 Output Noise


LP2951 Divider Resistance


Shutdown Threshold Voltage


Line Regulation


LP2951 Maximum Rated Output Current

LP2950 Maximum Rated Output Current

Thermal Response

Application Hints

EXTERNAL CAPACITORS

A 1.0 μF (or greater) capacitor is required between the output and ground for stability at output voltages of 5V or more. At lower output voltages, more capacitance is required (2.2 μF or more is recommended for 3V and 3.3V versions). Without this capacitor the part will oscillate. Most types of tantalum or aluminum electrolytics work fine here; even film types work but are not recommended for reasons of cost. Many aluminum electrolytics have electrolytes that freeze at about -30°C, so solid tantalums are recommended for operation below -25°C. The important parameters of the capacitor are an ESR of about 5 Ω or less and a resonant frequency above 500 kHz. The value of this capacitor may be increased without limit.

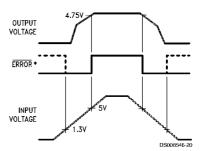
At lower values of output current, less output capacitance is required for stability. The capacitor can be reduced to 0.33 μF for currents below 10 mA or 0.1 μF for currents below 1 mA. Using the adjustable versions at voltages below 5V runs the error amplifier at lower gains so that *more* output capacitance is needed. For the worst-case situation of a 100 mA load at 1.23V output (Output shorted to Feedback) a 3.3 μF (or greater) capacitor should be used.

Unlike many other regulators, the LP2950 will remain stable and in regulation with no load in addition to the internal voltage divider. This is especially important in CMOS RAM keep-alive applications. When setting the output voltage of the LP2951 versions with external resistors, a minimum load of 1 µA is recommended.

A 1 μ F tantalum or aluminum electrolytic capacitor should be placed from the LP2950/LP2951 input to ground if there is more than 10 inches of wire between the input and the AC filter capacitor or if a battery is used as the input.

Stray capacitance to the LP2951 Feedback terminal can cause instability. This may especially be a problem when using high value external resistors to set the output voltage. Adding a 100 pF capacitor between Output and Feedback and increasing the output capacitor to at least 3.3 μF will fix this problem.

ERROR DETECTION COMPARATOR OUTPUT


The comparator produces a logic low output whenever the LP2951 output falls out of regulation by more than approximately 5%. This figure is the comparator's built-in offset of about 60 mV divided by the 1.235 reference voltage. (Refer to the block diagram in the front of the datasheet.) This trip level remains "5% below normal" regardless of the programmed output voltage of the 2951. For example, the error flag trip level is typically 4.75V for a 5V output or 11.4V for a 12V output. The out of regulation condition may be due either to low input voltage, current limiting, or thermal limiting. Figure 1 below gives a timing diagram depicting the ERROR signal and the regulated output voltage as the LP2951 input is ramped up and down. For 5V versions, the ERROR signal becomes valid (low) at about 1.3V input. It goes high at about 5V input (the input voltage at which $V_{OUT} = 4.75$). Since the LP2951's dropout voltage is load-dependent (see curve in typical performance characteristics), the input voltage trip point (about 5V) will vary with the load current. The output voltage trip point (approx. 4.75V) does not vary with

The error comparator has an open-collector output which requires an external pullup resistor. This resistor may be returned to the output or some other supply voltage depending

on system requirements. In determining a value for this resistor, note that while the output is rated to sink 400 μA , this sink current adds to battery drain in a low battery condition. Suggested values range from 100k to 1 $M\Omega$. The resistor is not required if this output is unused.

PROGRAMMING THE OUTPUT VOLTAGE (LP2951)

The LP2951 may be pin-strapped for the nominal fixed output voltage using its internal voltage divider by tying the output and sense pins together, and also tying the feedback and V_{TAP} pins together. Alternatively, it may be programmed for any output voltage between its 1.235V reference and its 30V maximum rating. As seen in *Figure 2*, an external pair of resistors is required.

*When $V_{\rm IN} \leq 1.3V$, the error flag pin becomes a high impedance, and the error flag voltage rises to its pull-up voltage. Using $V_{\rm DUT}$ as the pull-up voltage (see Figure 2), rather than an external 5V source, will keep the error flag voltage under 1.2V (typ.) in this condition. The user may wish to divide down the error flag voltage using equal-value resistors (10 k Ω suggested), to ensure a low-level logic signal during any fault condition, while still allowing a valid high logic level during normal operation.

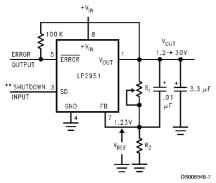
FIGURE 1. ERROR Output Timing

The complete equation for the output voltage is

$$V_{OUT} = V_{REF} \bullet \left(1 + \frac{R_1}{R_2} \right) + I_{FB}R_1$$

where V_{REF} is the nominal 1.235 reference voltage and I_{FB} is the feedback pin bias current, nominally -20 nA. The minimum recommended load current of 1 μA forces an upper limit of 1.2 $M\Omega$ on the value of R_2 , if the regulator must work with no load (a condition often found in CMOS in standby). I_{FB} will produce a 2% typical error in V_{OUT} which may be eliminated at room temperature by trimming R_1 . For better accuracy, choosing $R_2=100\text{k}$ reduces this error to 0.17% while increasing the resistor program current to 12 μA . Since the LP2951 typically draws 60 μA at no load with Pin 2 open-circuited, this is a small price to pay.

Application Hints (Continued)


REDUCING OUTPUT NOISE

In reference applications it may be advantageous to reduce the AC noise present at the output. One method is to reduce the regulator bandwidth by increasing the size of the output capacitor. This is the only way noise can be reduced on the 3 lead LP2950 but is relatively inefficient, as increasing the capacitor from 1 μF to 220 μF only decreases the noise from 430 μV to 160 μV rms for a 100 kHz bandwidth at 5V output.

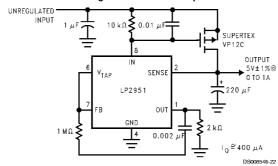
Noise can be reduced fourfold by a bypass capacitor accross $\mathbf{R}_{\mathrm{1}},$ since it reduces the high frequency gain from 4 to unity. Pick

$$C_{\text{BYPASS}} \cong \frac{1}{2\pi R_1 \cdot 200 \text{ Hz}}$$

or about 0.01 μ F. When doing this, the output capacitor must be increased to 3.3 μ F to maintain stability. These changes reduce the output noise from 430 μ V to 100 μ V rms for a 100 kHz bandwidth at 5V output. With the bypass capacitor added, noise no longer scales with output voltage so that improvements are more dramatic at higher output voltages.

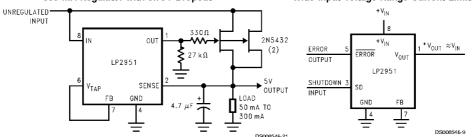
*See Application Hints

$$V_{out} = V_{Ref} \left(1 + \frac{R_1}{R_2} \right)$$

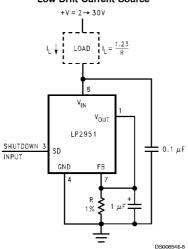

 $\ensuremath{^{**}\text{Drive}}$ with TTL-high to shut down. Ground or leave open if shutdown feature is not to be used.

Note: Pins 2 and 6 are left open.

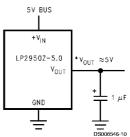
FIGURE 2. Adjustable Regulator


Typical Applications

1A Regulator with 1.2V Dropout

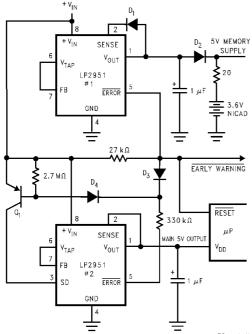

300 mA Regulator with 0.75V Dropout

Wide Input Voltage Range Current Limiter



DS008546-21
*Minimum input-output voltage ranges from 40 mV to 400 mV, depending on load current. Current limit is typically 160 mA.

Low Drift Current Source



5 Volt Current Limiter

*Minimum input-output voltage ranges from 40 mV to 400 mV, depending on load current. Current limit is typically 160 mA.

Regulator with Early Warning and Auxiliary Output

ERROR V_{OUT} LP2951

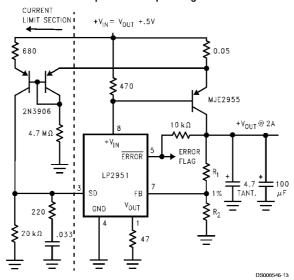
GND


DS008546-11

- Early warning flag on low input voltage
- Main output latches off at lower input voltages

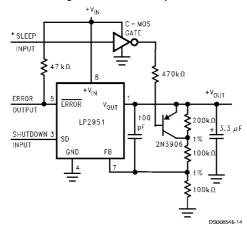
■ Battery backup on auxiliary output

Operation: Reg. #1's V_{ou} is programmed one diode drop above 5V. Its error flag becomes active when V_{in} ≤ 5.7V. When V_{in} drops below 5.3V, the error flag of Reg. #2 becomes active and via Q1 latches the main output off. When V_{in} again exceeds 5.7V Reg. #1 is back in regulation and the early warning signal rises, unlatching Reg. #2 via D3.

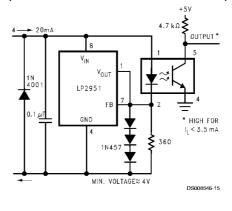

Latch Off When Error Flag Occurs +۷_{in}

SD

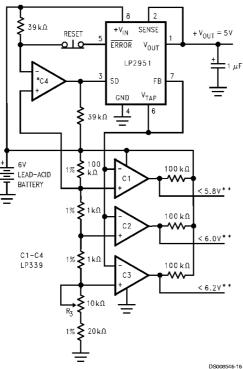
RESET


2 Ampere Low Dropout Regulator

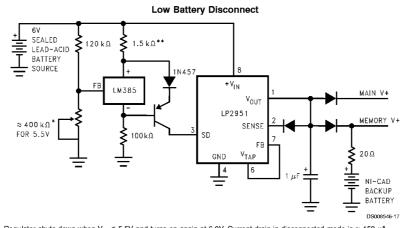
$$V_{out} = 1.23V \left(1 + \frac{R_1}{R_2}\right)$$


For $5V_{out}$, use internal resistors. Wire pin 6 to 7, & wire pin 2 to $\pm V_{out}$ Buss.

5V Regulator with 2.5V Sleep Function

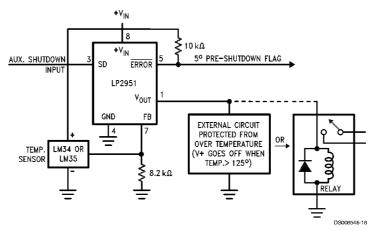


*High input lowers V_{out} to 2.5V

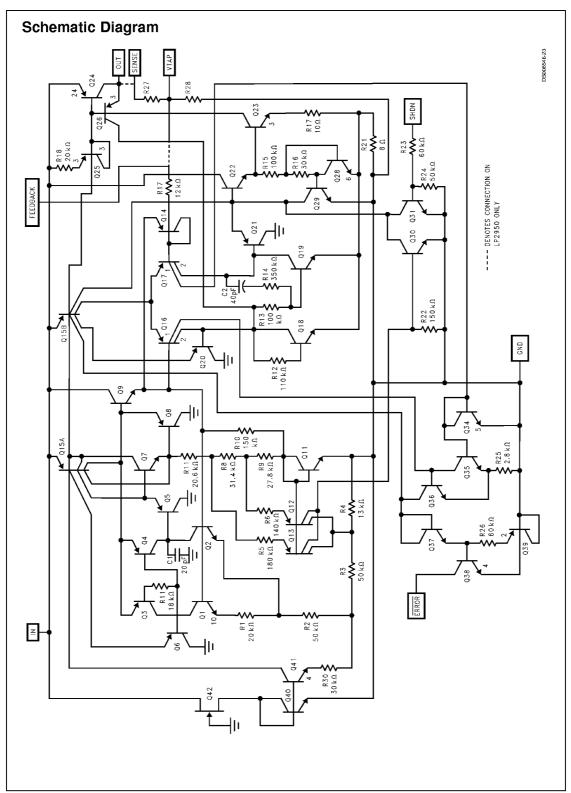

Open Circuit Detector for 4 ightarrow 20 mA Current Loop

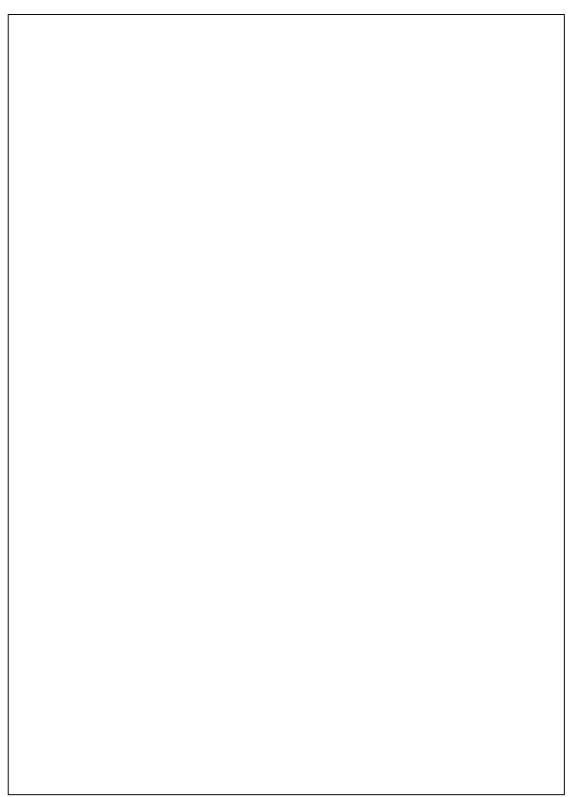
Regulator with State-of-Charge Indicator

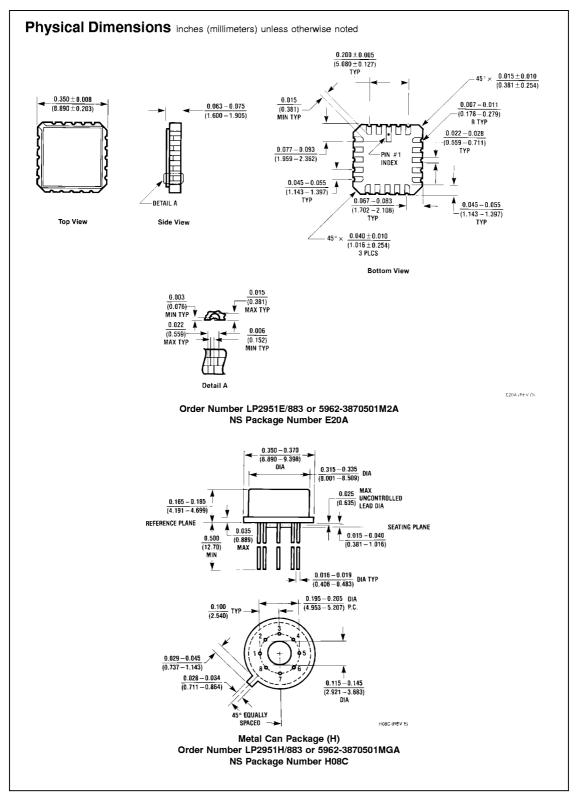
^{**}Outputs go low when $V_{\mbox{\scriptsize in}}$ drops below designated thresholds.

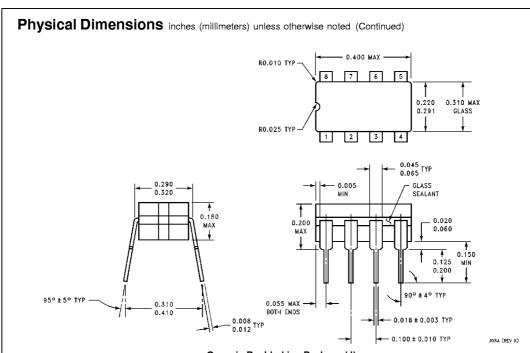


For values shown, Regulator shuts down when V_{in} < 5.5V and turns on again at 6.0V. Current drain in disconnected mode is \approx 150 μ A. *Sets disconnect Voltage

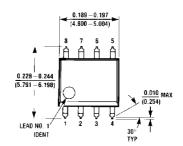

^{*}Optional Latch off when drop out occurs. Adjust R3 for C2 Switching when V_{in} is 6.0V.

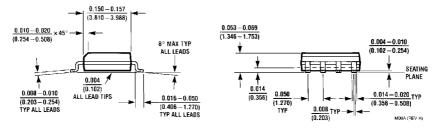

^{**}Sets disconnect Hysteresis

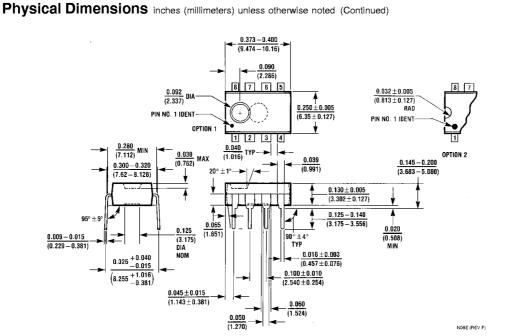

System Overtemperature Protection Circuit



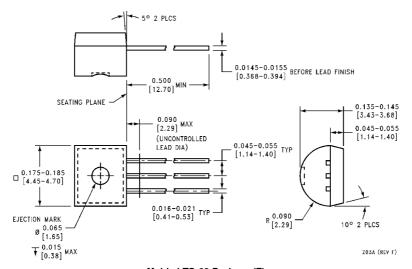
LM34 for 125°F Shutdown LM35 for 125°C Shutdown







Ceramic Dual-In-Line Package (J)
Order Number LP2951CJ, LP2951ACJ, LP2951J, LP2951J/883 or 5962-3870501MPA
NS Package Number J08A



Surface Mount Package (M)
Order Number LP2951ACM, LP2951CM, LP2951ACM-3.0,
LP2951CM-3.0, LP2951ACM-3.3 or LP2951CM-3.3
NS Package Number M08A

Molded Dual-In-Line Package (N)
Order Number LP2951ACN, LP2951CN, LP2951ACN-3.0,
LP2951CN-3.0, or LP2951ACN-3.3 or LP2951CN-3.3
NS Package Number N08E

Molded TO-92 Package (Z)
Order Number LP2950ACZ-3.0 or LP2950CZ-3.0, LP2950ACZ-3.3,
LP2950CZ-3.3, LP2950ACZ-5.0 or LP2950CZ-5.0
NS Package Number Z03A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 0.118±0.004 В $[3\pm 0.1]$ Ç (0.189)0.118±0.004 0.193±0.004 [3±0.1] [4.9±0.1] (0.040) [1.02] PIN 1 IDENT NOTE 2 (0.016) (0.0256) _{TYP} [0.41] [0.65] LAND PATTERN RECOMMENDATION (0.0256) TYP [0.65] 0.005 [0.13] TYP GAGE PLANE R [0.005 TYP 0.043 [0.25] □ 0.002[0.05] A 0.012 +0.004 -0.002 TYP 0.021±0.005 00-60 [0.53±0.12]

Surface Mount Package (MM) Order Number LP2951ACMM, LP2951CMM, LP2951ACMM-3.0, LP2951CMM-3.0, LP2951ACMM-3.3 or LP2951CMM-3.3 NS Package Number MUA08A

0.0375

[0.953]

0.007±0.002 [0.18±0.05] TYP

(0.034)

[0.86]

LIFE SUPPORT POLICY

0.002-0.006

[0.06-0.15]

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-CONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

 $[0.3^{+0.10}_{-0.05}]$

⊕ 0.002 [0.05] M B S C S

2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation Tel: 1-800-272-9959

Fax: 1-800-737-7018 Email: support@nsc.com

www.national.com

National Semiconductor

Fax: +49 (0) 1 80-530 85 86 Fax: +49 (0) 1 80-530 85 ob Email: europe support@nsc.com Deutsch Tel: +49 (0) 1 80-530 85 85 English Tel: +49 (0) 1 80-532 78 32 Français Tel: +49 (0) 1 80-532 93 58 Italiano Tel: +49 (0) 1 80-534 16 80 National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466

Japan Ltd. Tel: 81-3-5620-6175 Fax: 81-3-5620-6179 Email: sea.support@nsc.com

National Semiconductor

SEATING PLANE

MUAOBA (REV B)