ne<mark>x</mark>peria

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of <u>http://www.nxp.com</u>, <u>http://www.philips.com/</u> or <u>http://www.semiconductors.philips.com/</u>, use <u>http://www.nexperia.com</u>

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use **salesaddresses@nexperia.com** (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

74HC4060; 74HCT4060 14-stage binary ripple counter with oscillator Rev. 4 – 10 February 2016

Product data sheet

General description 1.

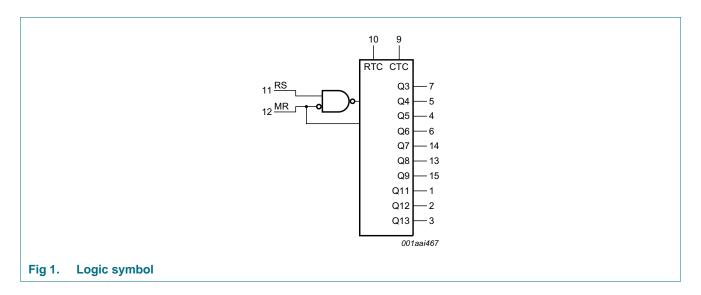
The 74HC4060; 74HCT4060 is a 14-stage ripple-carry counter/divider and oscillator with three oscillator terminals (RS, RTC and CTC), ten buffered parallel outputs (Q3 to Q9 and Q11 to Q13) and an overriding asynchronous master reset (MR). The oscillator configuration allows design of either RC or crystal oscillator circuits. The oscillator may be replaced by an external clock signal at input RS. In this case, keep the oscillator pins (RTC and CTC) floating. The counter advances on the HIGH-to-LOW transition of RS. A HIGH level on MR clears all counter stages and forces all outputs LOW, independent of the other input conditions. Inputs include clamp diodes. This enables the use of current limiting resistors to interface inputs to voltages in excess of V_{CC}.

Features and benefits 2.

- All active components on chip
- RC or crystal oscillator configuration
- Complies with JEDEC standard no. 7 A
- Input levels:
 - For 74HC4060: CMOS level
 - For 74HCT4060: TTL level
- ESD protection:
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V
- Multiple package options
- Specified from –40 °C to +85 °C and from –40 °C to +125 °C

Applications 3.

- Control counters
- Timers
- Frequency dividers
- Time-delay circuits


14-stage binary ripple counter with oscillator

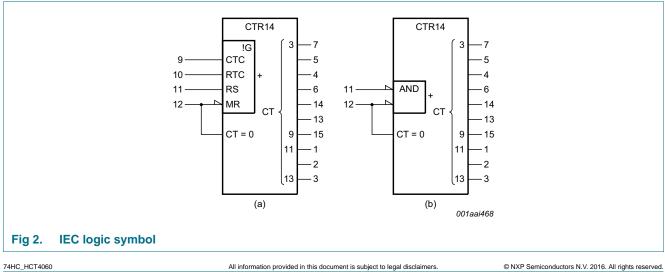
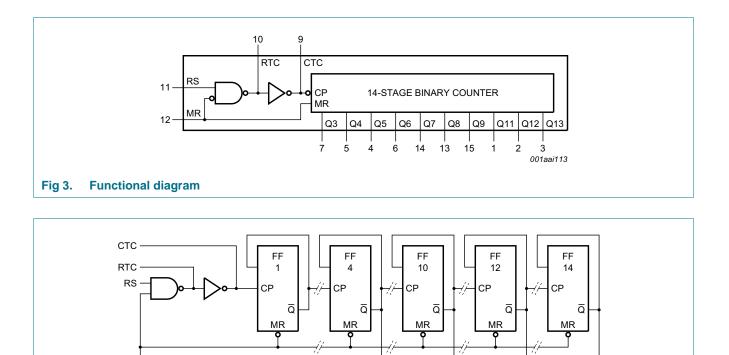

Ordering information 4.

Table 1. **Ordering information**

Type number	Package					
	Temperature range	Name	Description	Version		
74HC4060D	–40 °C to +125 °C	SO16	plastic small outline package; 16 leads;	SOT109-1		
74HCT4060D			body width 3.9 mm			
74HC4060DB	–40 °C to +125 °C	SSOP16	SSOP16 plastic shrink small outline package; 16 leads;			
74HCT4060DB			body width 5.3 mm			
74HC4060PW	–40 °C to +125 °C	TSSOP16	plastic thin shrink small outline package; 16 leads; body width 4.4 mm	SOT403-1		
74HC4060BQ	–40 °C to +125 °C	DHVQFN16	plastic dual in-line compatible thermal-enhanced	SOT763-1		
74HCT4060BQ			very thin quad flat package; no leads; 16 terminals; body 2.5 \times 3.5 \times 0.85 mm			

5. **Functional diagram**


MR

Logic diagram

Fig 4.

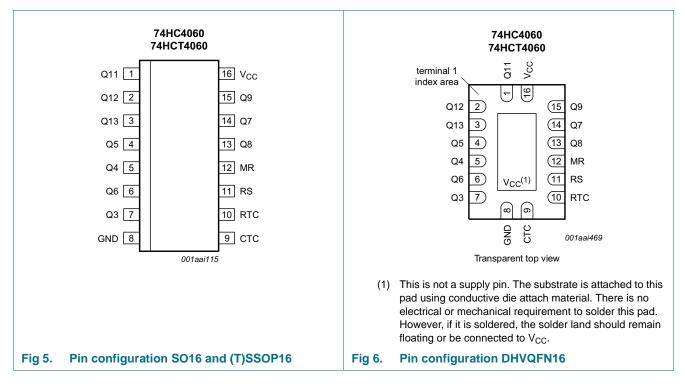
74HC4060; 74HCT4060

14-stage binary ripple counter with oscillator

č Q3

Q9

Q11

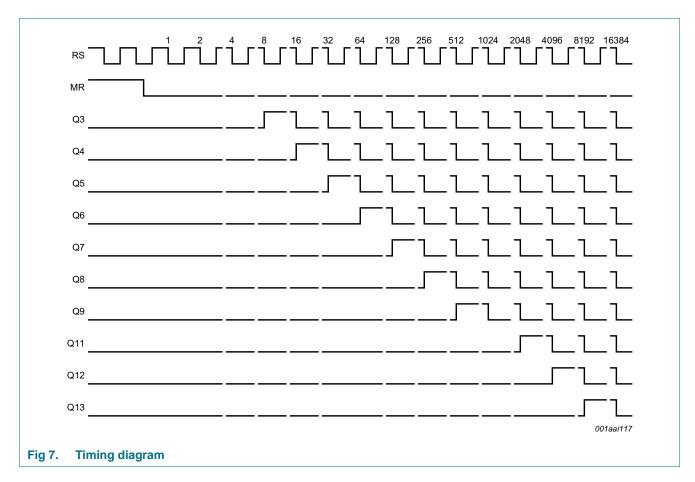

Q13

001aai114

14-stage binary ripple counter with oscillator

6. Pinning information

6.1 Pinning



6.2 Pin description

Table 2. **Pin description** Symbol Pin Description 1, 2, 3 Q11 to Q13 counter output Q3 to Q9 7, 5, 4, 6, 14, 13, 15 counter output GND 8 ground (0 V) СТС 9 external capacitor connection RTC 10 external resistor connection RS 11 clock input /oscillator pin MR 12 master reset input (active HIGH) V_{CC} 16 supply voltage

14-stage binary ripple counter with oscillator

7. Functional description

8. Limiting values

Table 3. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{CC}	supply voltage			-0.5	+7	V
I _{IK}	input clamping current	$V_{\rm I}$ < -0.5 V or $V_{\rm I}$ > $V_{\rm CC}$ + 0.5 V	<u>[1]</u>	-	±20	mA
I _{OK}	output clamping current	V_{O} < -0.5 V or V_{O} > V_{CC} + 0.5 V	<u>[1]</u>	-	±20	mA
lo	output current	$-0.5 \text{ V} < \text{V}_{\text{O}} < \text{V}_{\text{CC}} + 0.5 \text{ V}$		-	±25	mA
I _{CC}	supply current			-	50	mA
I _{GND}	ground current			-50	-	mA
T _{stg}	storage temperature			-65	+150	°C

14-stage binary ripple counter with oscillator

Table 3. Limiting values ...continued

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
P _{tot}	total power dissipation	$T_{amb} = -40 \text{ °C to } +125 \text{ °C}$			
		SO16 package [2]	-	500	mW
		(T)SSOP16 package [3]	-	500	mW
		DHVQFN16 package [4]	-	500	mW

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] P_{tot} derates linearly with 8 mW/K above 70 °C.

[3] P_{tot} derates linearly with 5.5 mW/K above 60 °C.

[4] P_{tot} derates linearly with 4.5 mW/K above 60 °C.

9. Recommended operating conditions

Table 4. Recommended operating conditions

Voltages are referenced to GND (ground = 0 V)

Symbol	Parameter	Conditions	74HC4060			74	Unit		
			Min	Тур	Max	Min	Тур	Max	
V _{CC}	supply voltage		2.0	5.0	6.0	4.5	5.0	5.5	V
VI	input voltage		0	-	V _{CC}	0	-	V _{CC}	V
Vo	output voltage		0	-	V _{CC}	0	-	V _{CC}	V
T _{amb}	ambient temperature		-40	-	+125	-40	-	+125	°C
Δt/ΔV	input transition rise and fall rate	$V_{CC} = 2.0 V$	-	-	625	-	-	-	ns/V
		$V_{CC} = 4.5 V$	-	1.67	139	-	1.67	139	ns/V
		$V_{CC} = 6.0 V$	-	-	83	-	-	-	ns/V

10. Static characteristics

Table 5. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		25 °C		–40 °C t	o +85 °C	–40 °C to +125 °C		Unit
			Min	Тур	Мах	Min	Max	Min	Max	
74HC40	60	1								
V _{IH}	HIGH-level	MR input								
	input voltage	V _{CC} = 2.0 V	1.5	1.3	-	1.5	-	1.5	-	V
		V _{CC} = 4.5 V	3.15	2.4	-	3.15	-	3.15	-	V
		V _{CC} = 6.0 V	4.2	3.1	-	4.2	-	4.2	-	V
		RS input								
		V _{CC} = 2.0 V	1.7	-	-	1.7	-	1.7	-	V
		V _{CC} = 4.5 V	3.6	-	-	3.6	-	3.6	-	V
		V _{CC} = 6.0 V	4.8	-	-	4.8	-	4.8	-	V

14-stage binary ripple counter with oscillator

Table 5. Static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		25 °C		–40 °C t	o +85 °C	–40 °C te	o +125 °C	Unit
			Min	Тур	Max	Min	Max	Min	Max	
V _{IL}	LOW-level	MR input								
	input voltage	V _{CC} = 2.0 V	-	0.8	0.5	-	0.5	-	0.5	V
		V _{CC} = 4.5 V	-	2.1	1.35	-	1.35	-	1.35	V
		V _{CC} = 6.0 V	-	2.8	1.8	-	1.8	-	1.8	V
		RS input								
		V _{CC} = 2.0 V	-	-	0.3	-	0.3	-	0.3	V
		V _{CC} = 4.5 V	-	-	0.9	-	0.9	-	0.9	V
		V _{CC} = 6.0 V	-	-	1.2	-	1.2	-	1.2	V
V _{OH}	HIGH-level	RTC output; RS = MR = GND								
	output	$I_{O} = -20 \ \mu A; \ V_{CC} = 2.0 \ V$	1.9	2.0	-	1.9	-	1.9	-	V
	voltage	$I_{O} = -20 \ \mu A; \ V_{CC} = 4.5 \ V$	4.4	4.5	-	4.4	-	4.4	-	V
		$I_{O} = -20 \ \mu A; \ V_{CC} = 6.0 \ V$	5.9	6.0	-	5.9	-	5.9	-	V
		$I_{O} = -2.6 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.98	-	-	3.84	-	3.7	-	V
		$I_{O} = -3.3 \text{ mA}; V_{CC} = 6.0 \text{ V}$	5.48	-	-	5.34	-	5.2	-	V
		RTC output; RS = MR = V_{CC}								
		$I_0 = -20 \ \mu\text{A}; \ V_{CC} = 2.0 \ \text{V}$	1.9	2.0	-	1.9	-	1.9	-	V
		$I_0 = -20 \ \mu A; \ V_{CC} = 4.5 \ V$	4.4	4.5	-	4.4	-	4.4	-	V
		$I_0 = -20 \ \mu A; \ V_{CC} = 6.0 \ V$	5.9	6.0	-	5.9	-	5.9	-	V
		$I_{O} = -0.65 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.98	-	-	3.84	-	3.7	-	V
		$I_{O} = -0.85 \text{ mA}; V_{CC} = 6.0 \text{ V}$	5.48	-	-	5.34	-	5.2	-	V
		CTC output; RS = V _{IH} ; MR = V _{IL}								
		$I_{O} = -3.2 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.98	-	-	3.84	-	3.7	-	V
		$I_{O} = -4.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	5.48	-	-	5.34	-	5.2	-	V
		V _I = V _{IH} or V _{IL} ; except RTC output								
		$I_{O} = -20 \ \mu A; \ V_{CC} = 2.0 \ V$	1.9	2.0	-	1.9	-	1.9	-	V
		$I_{O} = -20 \ \mu A; \ V_{CC} = 4.5 \ V$	4.4	4.5	-	4.4	-	4.4	-	V
		$I_{O} = -20 \ \mu A; \ V_{CC} = 6.0 \ V$	5.9	6.0	-	5.9	-	5.9	-	V
		$V_I = V_{IH}$ or V_{IL} ; except RTC and CTC outputs								
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.98	-	-	3.84	-	3.7	-	V
		$I_{O} = -5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	5.48	-	-	5.34	-	5.2	-	V

14-stage binary ripple counter with oscillator

Table 5. Static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		25 °C		–40 °C t	o +85 °C	-40 °C te	o +125 °C	Unit
			Min	Тур	Max	Min	Мах	Min	Max	-
V _{OL}	LOW-level output	RTC output; RS = V _{CC} ; MR = GND								
	voltage	$I_{O} = 20 \ \mu A; \ V_{CC} = 2.0 \ V$	-	0	0.1	-	0.1	-	0.1	V
		$I_0 = 20 \ \mu A; \ V_{CC} = 4.5 \ V$	-	0	0.1	-	0.1	-	0.1	V
		$I_0 = 20 \ \mu A; \ V_{CC} = 6.0 \ V$	-	0	0.1	-	0.1	-	0.1	V
		$I_0 = 2.6 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.26	-	0.33	-	0.4	V
		$I_0 = 3.3 \text{ mA}; V_{CC} = 6.0 \text{ V}$	-	-	0.26	-	0.33	-	0.4	V
		CTC output; RS = V_{IL} ; MR = V_{IH}								
		$I_0 = 3.2 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.26	-	0.33	-	0.4	V
		$I_0 = 4.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	-	-	0.26	-	0.33	-	0.4	V
		V _I = V _{IH} or V _{IL} ; except RTC output								
		$I_{O} = 20 \ \mu\text{A}; \ V_{CC} = 2.0 \ \text{V}$	-	0	0.1	-	0.1	-	0.1	V
		$I_0 = 20 \ \mu A; \ V_{CC} = 4.5 \ V$	-	0	0.1	-	0.1	-	0.1	V
		$I_{O} = 20 \ \mu\text{A}; \ V_{CC} = 6.0 \ \text{V}$	-	0	0.1	-	0.1	-	0.1	V
		$V_I = V_{IH}$ or V_{IL} ; except RTC and CTC outputs								
		$I_{O} = 4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.26	-	0.33	-	0.4	V
		$I_0 = 5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	-	-	0.26	-	0.33	-	0.4	V
I	input leakage current	$V_{I} = V_{CC}$ or GND; $V_{CC} = 6.0$ V	-	-	±0.1	-	±1.0	-	±1.0	μΑ
I _{CC}	supply current		-	-	8.0	-	80	-	160	μΑ
CI	input capacitance		-	3.5	-	-	-	-	-	pF
74HCT4	060		1		1	1	1	1	_	1
V _{IH}	HIGH-level input voltage	MR input; [1] V _{CC} = 4.5 V to 5.5 V	2.0	-	-	2.0	-	2.0	-	V
		RS input; V _{CC} = 4.5 V	3.6	-	-	3.6	-	3.6	-	V
V _{IL}	LOW-level input voltage	MR input; [1] V _{CC} = 4.5 V to 5.5 V	-	-	0.8	-	0.8	-	0.8	V
		RS input; $V_{CC} = 4.5 V$	-	-	0.9	-	0.9	-	0.9	V

14-stage binary ripple counter with oscillator

Table 5. Static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		25 °C		–40 °C t	o +85 °C	-40 °C t	o +125 °C	Unit
			Min	Тур	Max	Min	Мах	Min	Max	
V _{ОН}	HIGH-level	RTC output; RS = MR = V_{CC}								
	output	$I_{O} = -20 \ \mu A; V_{CC} = 4.5 \ V$	4.4	4.5	-	4.4	-	4.4	-	V
	voltage	$I_{O} = -0.65 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.98	-	-	3.84	-	3.7	-	V
		RTC output; RS = MR = GND								
		$I_{O} = -20 \ \mu A; \ V_{CC} = 4.5 \ V$	4.4	4.5	-	4.4	-	4.4	-	V
		$I_{O} = -2.6 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.98	-	-	3.84	-	3.7	-	V
		CTC output; RS = V_{IH} ; MR = V_{IL}								
		$I_{O} = -3.2 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.98	-	-	3.84	-	3.7	-	V
		$V_I = V_{IH} \text{ or } V_{IL};$ except RTC output								
		$I_{O} = -20 \ \mu A; \ V_{CC} = 4.5 \ V$	4.4	4.5	-	4.4	-	4.4	-	V
		$V_I = V_{IH}$ or V_{IL} ; except RTC and CTC outputs								
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.98	-	-	3.84	-	3.7	-	V
V _{OL}	LOW-level output	RTC output; RS = V _{CC} ; MR = GND								
	voltage	$I_0 = 20 \ \mu A; V_{CC} = 4.5 \ V$	-	0	0.1	-	0.1	-	0.1	V
		$I_{O} = 2.6 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.26	-	0.33	-	0.4	V
		CTC output; RS = V_{IL} ; MR = V_{IH}								
		$I_0 = 3.2 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.26	-	0.33	-	0.4	V
		$V_I = V_{IH} \text{ or } V_{IL};$ except RTC output								
		$I_0 = 20 \ \mu A; V_{CC} = 4.5 \ V$	-	0	0.1	-	0.1	-	0.1	V
		$V_I = V_{IH}$ or V_{IL} ; except RTC and CTC outputs								
		$I_{O} = 4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.26	-	0.33	-	0.4	V
lı	input leakage current	$V_{I} = V_{CC}$ or GND; $V_{CC} = 5.5 V$	-	-	±0.1	-	±1.0	-	±1.0	μA
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}; I_O = 0 \text{ A}$	-	-	8.0	-	80	-	160	μΑ
ΔI_{CC}	additional supply current	per input pin; $V_I = V_{CC} - 2.1 \text{ V}$; other inputs at V_{CC} or GND; $V_{CC} = 4.5 \text{ V}$ to 5.5 V; $I_O = 0 \text{ A}$	-	40	144	-	180	-	196	μA
CI	input capacitance		-	3.5	-	-	-	-	-	pF

[1] For HCT4060, only input MR (pin 12) has TTL input switching levels.

14-stage binary ripple counter with oscillator

11. Dynamic characteristics

Table 6. Dynamic characteristics

GND = 0 V; $C_L = 50$ pF unless otherwise specified; for test circuit see Figure 11.

Symbol	Parameter	Conditions		25 °C		–40 °C t	o +85 °C	–40 °C to +125 °C		Unit
			Min	Тур	Max	Min	Max	Min	Max	-
74HC40	60									-1
t _{pd}	propagation	RS to Q3; see Figure 8	1							
	delay	V _{CC} = 2.0 V	-	99	300	-	375	-	450	ns
		$V_{CC} = 4.5 V$	-	36	60	-	75	-	90	ns
		$V_{CC} = 5.0 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$	-	31	-	-	-	-	-	ns
		$V_{CC} = 6.0 V$	-	29	51	-	64	-	77	ns
		Qn to Qn+1; see Figure 9	2]							-
		V _{CC} = 2.0 V	-	22	80	-	100	-	120	ns
		V _{CC} = 4.5 V	-	8	16	-	20	-	24	ns
		V _{CC} = 5.0 V; C _L = 15 pF	-	6	-	-	-	-	-	ns
		V _{CC} = 6.0 V	-	6	14	-	17	-	20	ns
t _{PHL}	HIGH to LOW	MR to Qn; see Figure 10								
	propagation	V _{CC} = 2.0 V	-	55	175	-	220	-	265	ns
	delay	V _{CC} = 4.5 V	-	20	35	-	44	-	53	ns
		V _{CC} = 5.0 V; C _L = 15 pF	-	17	-	-	-	-	-	ns
		V _{CC} = 6.0 V	-	16	30	-	37	-	45	ns
t _t	transition time	Qn; see Figure 8	<u>81</u>							
		V _{CC} = 2.0 V	-	19	75	-	95	-	110	ns
		V _{CC} = 4.5 V	-	7	15	-	19	-	22	ns
		V _{CC} = 6.0 V	-	6	13	-	16	-	19	ns
t _W	pulse width	RS (HIGH or LOW); see <u>Figure 8</u>								
		V _{CC} = 2.0 V	80	17	-	100	-	120	-	ns
		V _{CC} = 4.5 V	16	6	-	20	-	24	-	ns
		V _{CC} = 6.0 V	14	5	-	17	-	20	-	ns
		MR (HIGH); see Figure 10								
		V _{CC} = 2.0 V	80	25	-	100	-	120	-	ns
		V _{CC} = 4.5 V	16	9	-	20	-	24	-	ns
		V _{CC} = 6.0 V	14	7	-	17	-	20	-	ns
rec	recovery time	MR to RS; see Figure 10								
	-	V _{CC} = 2.0 V	100	28	-	125	-	150	-	ns
		V _{CC} = 4.5 V	20	10	-	25	-	30	-	ns
		$V_{CC} = 6.0 V$	17	8	-	21	-	26	-	ns

14-stage binary ripple counter with oscillator

Table 6. Dynamic characteristics ...continued

GND = 0 V; $C_L = 50$ pF unless otherwise specified; for test circuit see <u>Figure 11</u>.

Symbol	Parameter	Conditions			25 °C		–40 °C t	o +85 °C	–40 °C to +125 °C		Unit
				Min	Тур	Max	Min	Max	Min	Мах	
f _{max}	maximum	RS; see Figure 8									
	frequency	V _{CC} = 2.0 V		6	26	-	4.8	-	4	-	MHz
		V _{CC} = 4.5 V		30	80	-	24	-	20	-	MHz
		V _{CC} = 5.0 V; C _L = 15 pF		-	87	-	-	-	-	-	MHz
		V _{CC} = 6.0 V		35	95	-	28	-	24	-	MHz
C _{PD}	power dissipation capacitance	$V_{I} = GND \text{ to } V_{CC};$ $V_{CC} = 5 \text{ V}; f_{i} = 1 \text{ MHz}$	[4]	-	40	-	-	-	-	-	pF
74HCT40	060	1					1	1	1		
t _{pd}	propagation	RS to Q3; see Figure 8	[1]								
	delay	V _{CC} = 4.5 V		-	33	66	-	83	-	99	ns
		$V_{CC} = 5.0 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$		-	31	-	-	-	-	-	ns
		Qn to Qn+1; see Figure 9	[2]								
		V _{CC} = 4.5 V		-	8	16	-	20	-	24	ns
		$V_{CC} = 5.0 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$		-	6	-	-	-	-	-	ns
t _{PHL}	HIGH to LOW	MR to Qn; see Figure 10									
	propagation delay	V _{CC} = 4.5 V		-	21	44	-	55	-	66	ns
	uelay	$V_{CC} = 5.0 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$		-	18	-	-	-	-	-	ns
tt	transition time	Qn; see Figure 8	[3]								
		V _{CC} = 4.5 V		-	7	15	-	19	-	22	ns
t _W	pulse width	RS (HIGH or LOW); see <u>Figure 8</u>									
		V _{CC} = 4.5 V		16	6	-	20	-	24	-	ns
		MR (HIGH); see Figure 10									
		V _{CC} = 4.5 V		16	6	-	20	-	24	-	ns
t _{rec}	recovery time	MR to RS; see Figure 10									
		V _{CC} = 4.5 V		26	13	-	33	-	39	-	ns
f _{max}	maximum	RS; see Figure 8									
	frequency	V _{CC} = 4.5 V		30	80	-	24	-	20	-	MHz
		V _{CC} = 5.0 V; C _L = 15 pF		-	88	-	-	-	-	-	MHz

14-stage binary ripple counter with oscillator

Table 6. Dynamic characteristics ... continued

 $GND = 0 V; C_L = 50 pF$ unless otherwise specified; for test circuit see <u>Figure 11</u>.

Symbol	Parameter	Conditions	25 °C			–40 °C to +85 °C		–40 °C to +125 °C		Unit
			Min	Тур	Max	Min	Max	Min	Max	
C _{PD}	power dissipation capacitance	$V_{I} = GND \text{ to } V_{CC} - 1.5 \text{ V};$ [4] $V_{CC} = 5 \text{ V}; f_{i} = 1 \text{ MHz}$	-	40	-	-	-	-	-	pF

[1] t_{pd} is the same as t_{PHL} and t_{PLH} .

[2] Qn+1 is the next Qn output.

[3] t_t is the same as t_{THL} and t_{TLH} .

[4] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W):

 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} \times N + \sum (C_{L} \times V_{CC}^{2} \times f_{o}) \text{ where:}$

 $f_i = input frequency in MHz;$

 f_o = output frequency in MHz;

 C_L = output load capacitance in pF;

 V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of outputs.

12. Waveforms

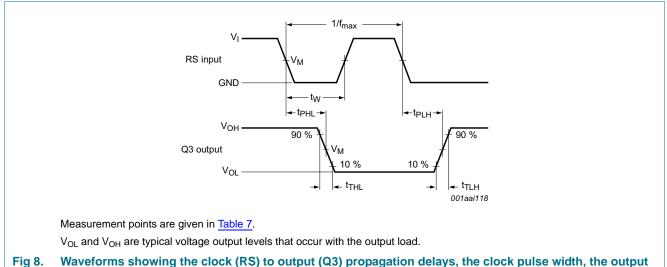
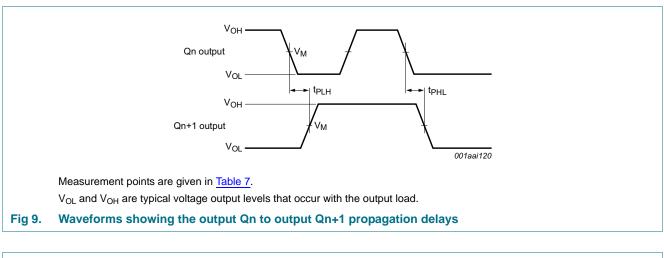
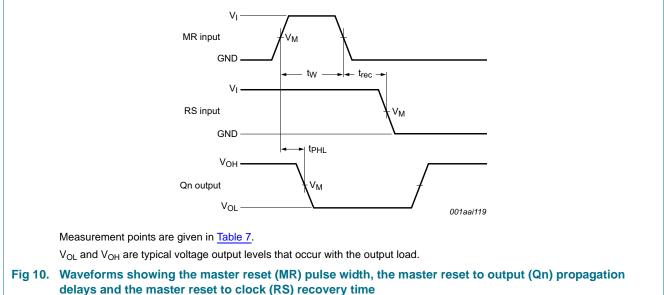




Fig 8. Waveforms showing the clock (RS) to output (Q3) propagation delays, the clock pulse width, transition times and the maximum clock frequency

14-stage binary ripple counter with oscillator

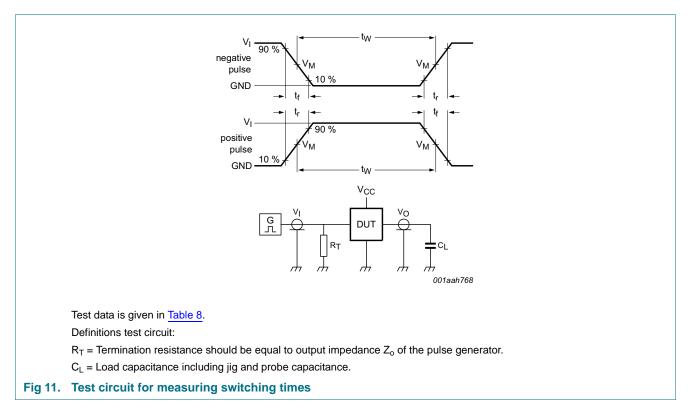
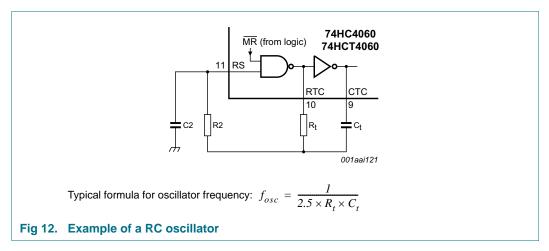


Table 7.Measurement points

Туре	Input	Output
	V _M	V _M
74HC4060	$0.5 \times V_{CC}$	$0.5 \times V_{CC}$
74HCT4060	1.3 V	1.3 V

14-stage binary ripple counter with oscillator

Table 8. Test data


Туре	Input		Load
	VI	t _r , t _f	CL
74HC4060	V _{CC}	6 ns	15 pF, 50 pF
74HCT4060	3 V	6 ns	15 pF, 50 pF

14-stage binary ripple counter with oscillator

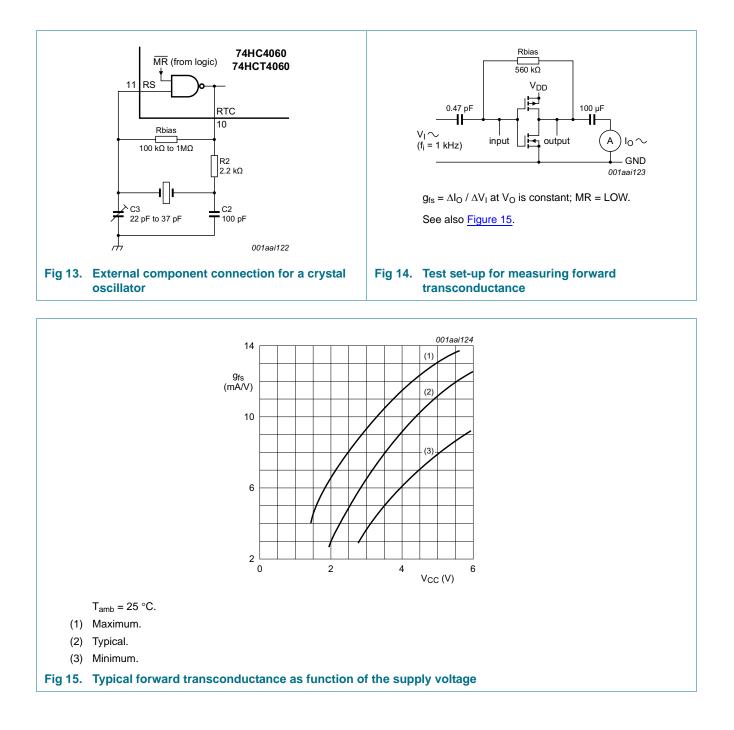
13. RC oscillator

13.1 Timing component limitations

The oscillator frequency is mainly determined by R_tC_t , provided $R2 \approx 2R_t$ and $R2C2 << R_tC_t$. The function of R2 is to minimize the influence of the forward voltage across the input protection diodes on the frequency. The stray capacitance C2 should be kept as small as possible. In consideration of accuracy, C_t must be larger than the inherent stray capacitance. R_t must be larger than the ON resistance in series with it, which typically is 280 Ω at $V_{CC} = 2.0$ V, 130 Ω at $V_{CC} = 4.5$ V and 100 Ω at $V_{CC} = 6.0$ V.

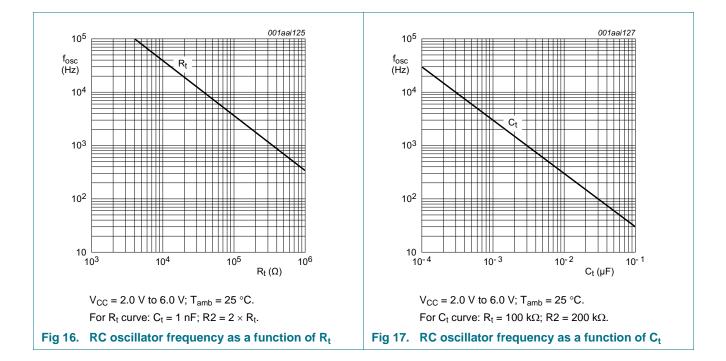
The recommended values for these components to maintain agreement with the typical oscillation formula are:

 C_t > 50 pF, up to any practical value and 10 k Ω < R_t < 1 M Ω .

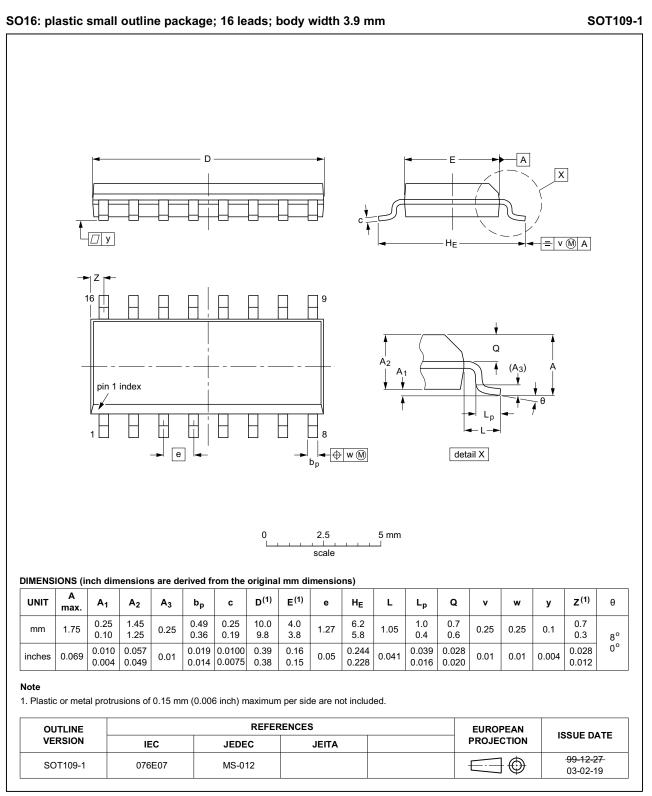

In order to avoid start-up problems, $R_t \ge 1 \ k\Omega$.

13.2 Typical crystal oscillator circuit

In <u>Figure 13</u>, R2 is the power limiting resistor. For starting and maintaining oscillation a minimum transconductance is necessary, so R2 should not be too large. A practical value for R2 is 2.2 k Ω .


74HC_HCT4060

14-stage binary ripple counter with oscillator


74HC_HCT4060

14-stage binary ripple counter with oscillator

14-stage binary ripple counter with oscillator

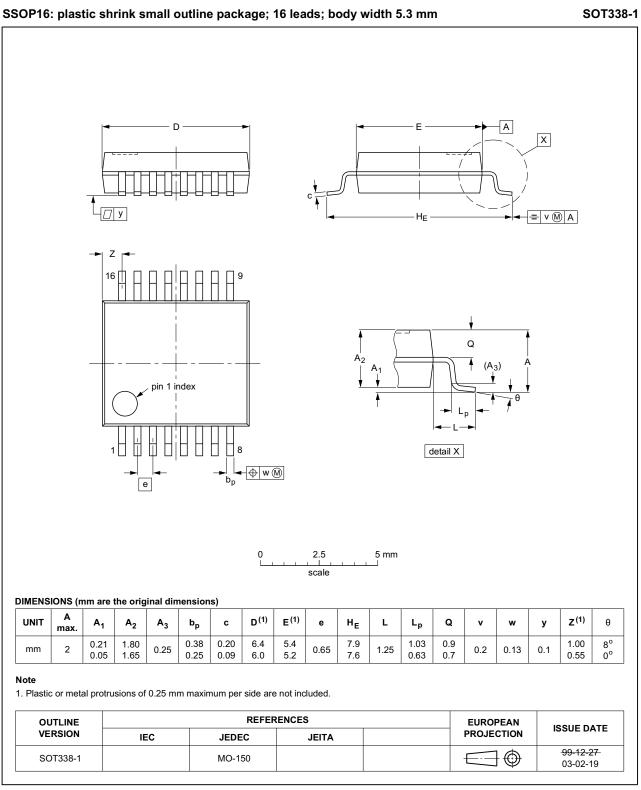

14. Package outline

Fig 18. Package outline SOT109-1 (SO16)

74HC_HCT4060

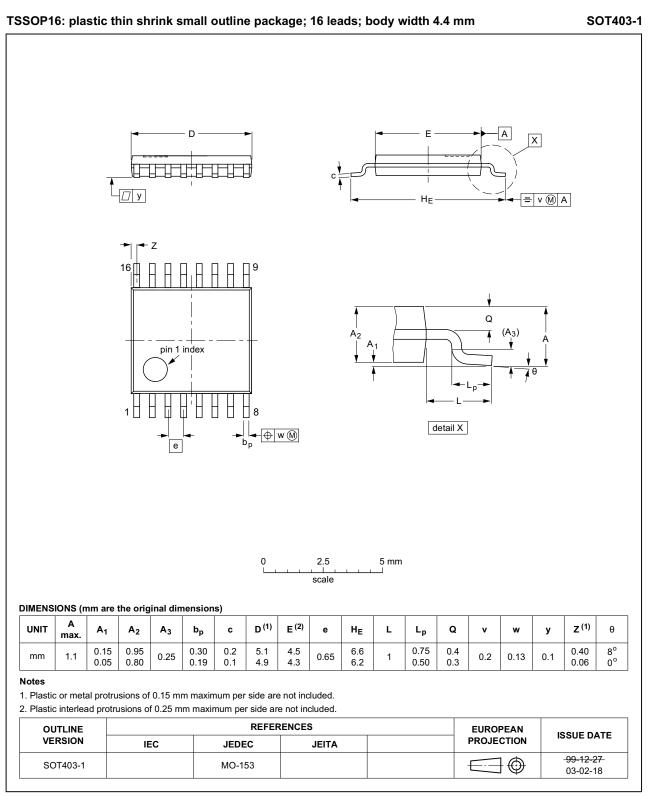

14-stage binary ripple counter with oscillator

Fig 19. Package outline SOT338-1 (SSOP16)

74HC_HCT4060

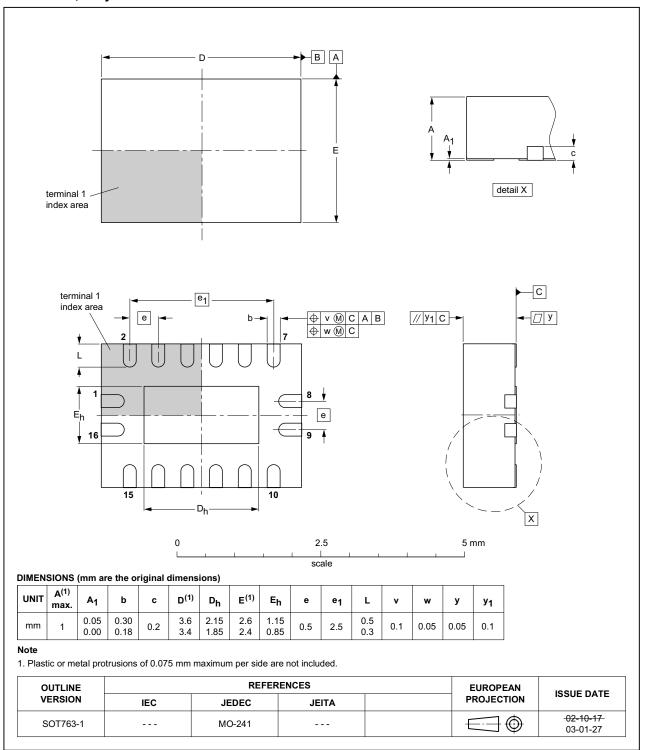

14-stage binary ripple counter with oscillator

Fig 20. Package outline SOT403-1 (TSSOP16)

74HC_HCT4060

14-stage binary ripple counter with oscillator

DHVQFN16: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body 2.5 x 3.5 x 0.85 mm SOT763-1

Fig 21. Package outline SOT763-1 (DHVQFN16)

74HC_HCT4060

14-stage binary ripple counter with oscillator

15. Abbreviations

Table 9. Abbreviations		
Acronym	Description	
CMOS	Complementary Metal-Oxide Semiconductor	
DUT	Device Under Test	
ESD	ElectroStatic Discharge	
HBM	Human Body Model	
MM	Machine Model	
TTL	Transistor-Transistor Logic	

16. Revision history

Table 10.Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74HC_HCT4060 v.4	20160210	Product data sheet	-	74HC_HCT4060 v.3
Modifications:	Type numbers 74HC4060N and 74HCT4060N (SOT38-4) removed.			
	 <u>Table 5</u>: HIGH and LOW input levels added for 74HCT4060. (errata) 			
74HC_HCT4060 v.3	20080714	Product data sheet	-	74HC_HCT4060_CNV v.2
Modifications:	 The format of this data sheet has been redesigned to comply with the new identity guidelines of NXP Semiconductors. Legal texts have been adapted to the new company name where appropriate. <u>Section 4</u>: DHVQFN16 package added. 			
	 <u>Section 8</u>: derating values added for DHVQFN16 package. 			
	 <u>Section 14</u>: outline drawing added for DHVQFN16 package. 			
74HC_HCT4060_CNV v.2	19970901	Product specification	-	-

14-stage binary ripple counter with oscillator

17. Legal information

17.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

17.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

17.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

14-stage binary ripple counter with oscillator

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

18. Contact information

NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

17.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

14-stage binary ripple counter with oscillator

19. Contents

1	General description 1
2	Features and benefits 1
3	Applications
4	Ordering information 2
5	Functional diagram 2
6	Pinning information 4
6.1	Pinning 4
6.2	Pin description 4
7	Functional description 5
8	Limiting values 5
9	Recommended operating conditions 6
10	Static characteristics 6
11	Dynamic characteristics 10
12	Waveforms 12
13	RC oscillator 15
13.1	Timing component limitations 15
13.2	Typical crystal oscillator circuit
14	Package outline 18
15	Abbreviations 22
16	Revision history 22
17	Legal information
17.1	Data sheet status 23
17.2	Definitions
17.3	Disclaimers
17.4	Trademarks
18	Contact information 24
19	Contents 25

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP Semiconductors N.V. 2016.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 10 February 2016 Document identifier: 74HC_HCT4060