40 Watt Peak Power Zener Transient Voltage Suppressors

SOT-23 Dual Common Cathode Zeners for ESD Protection

These dual monolithic silicon zener diodes are designed for applications requiring transient overvoltage protection capability. They are intended for use in voltage and ESD sensitive equipment such as computers, printers, business machines, communication systems, medical equipment and other applications. Their dual junction common cathode design protects two separate lines using only one package. These devices are ideal for situations where board space is at a premium.

The SZ/MMBZ27VCL can be used to protect a single wire communication network form EMI and ESD transient surge voltages. The SZ/MMBZ27VCL is recommended by the Society of Automotive Engineers (SAE), February 2000, J2411 "Single Wire Can Network for Vehicle Applications" specification as a solution for transient voltage problems.

Specification Features:

- SOT-23 Package Allows Either Two Separate Unidirectional Configurations or a Single Bidirectional Configuration
- Working Peak Reverse Voltage Range 12.8 V, 22 V, 31.2 V
- Standard Zener Breakdown Voltage Range 15 V, 27 V, 39 V
- Peak Power 40 W @ 1.0 ms (Bidirectional), per Figure 5 Waveform
- ESD Rating of Class 3B (exceeding 16 kV) per the Human Body Model
- ESD Rating of IEC61000-4-2 Level 4, ±30 kV Contact Discharge
- Low Leakage < 100 nA
- Flammability Rating: UL 94 V-O
- SZ Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These are Pb-Free Devices

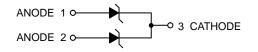
Mechanical Characteristics:

 $\textbf{CASE:}\ Void-free,\ transfer-molded,\ thermosetting\ plastic\ case$

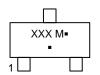
FINISH: Corrosion resistant finish, easily solderable

MAXIMUM CASE TEMPERATURE FOR SOLDERING PURPOSES:

260°C for 10 Seconds



ON Semiconductor®


www.onsemi.com

SOT-23 CASE 318 STYLE 9

MARKING DIAGRAM

XXX = 15D, 27C or 39C
M = Date Code
Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]			
MMBZ15VDLT1G,	SOT-23	3,000 /			
SZMMBZ15VDLT1G	(Pb-Free)	Tape & Reel			
MMBZ15VDLT3G,	SOT-23	10,000 /			
SZMMBZ15VDLT3G	(Pb-Free)	Tape & Reel			
MMBZxxVCLT1G,	SOT-23	3,000 /			
SZMMBZxxVCLT1G	(Pb-Free)	Tape & Reel			
MMBZxxVCLT3G,	SOT-23	10,000 /			
SZMMBZxxVCLT3G	(Pb-Free)	Tape & Reel			

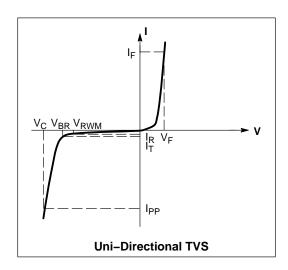
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Power Dissipation @ 1.0 ms (Note 1) @ T _L ≤ 25°C	P _{pk}	40	Watts
Total Power Dissipation on FR–5 Board (Note 2) @ T _A = 25°C Derate above 25°C	P _D	225 1.8	mW mW/°C
Thermal Resistance Junction-to-Ambient	$R_{ hetaJA}$	556	°C/W
Total Power Dissipation on Alumina Substrate (Note 3) @ T _A = 25°C Derate above 25°C	P _D	300 2.4	mW mW/°C
Thermal Resistance Junction-to-Ambient	$R_{ hetaJA}$	417	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	- 55 to +150	°C
Lead Solder Temperature – Maximum (10 Second Duration)	T _L	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Nonrepetitive current pulse per Figure 5 and derate above $T_A = 25^{\circ}C$ per Figure 6.


- 2. $FR-5 = 1.0 \times 0.75 \times 0.62 \text{ in.}$
- 3. Alumina = 0.4 x 0.3 x 0.024 in., 99.5% alumina

ELECTRICAL CHARACTERISTICS

(T_A = 25°C unless otherwise noted)

UNIDIRECTIONAL (Circuit tied to Pins 1 and 3 or 2 and 3)

Symbol	Parameter
I _{PP}	Maximum Reverse Peak Pulse Current
V _C	Clamping Voltage @ IPP
V _{RWM}	Working Peak Reverse Voltage
I _R	Maximum Reverse Leakage Current @ V _{RWM}
V _{BR}	Breakdown Voltage @ I _T
I _T	Test Current
V_{BR}	Maximum Temperature Coefficient of V _{BR}
I _F	Forward Current
V _F	Forward Voltage @ I _F

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

UNIDIRECTIONAL (Circuit tied to Pins 1 and 3 or Pins 2 and 3)

 $(V_F = 0.9 \text{ V Max } @ I_F = 10 \text{ mA})$

				Breakdown Voltage			V _C @ I _{PP} (Note 5)			
	Device	V _{RWM}	I _R @ V _{RWM}	V _{BI}	V _{BR} (Note 4) (V) @ I _T		@ I _T	V _C	I _{PP}	V_{BR}
Device*	Marking	Volts	nA	Min	Nom	Max	mA	V	Α	mV/°C
MMBZ15VDLT1G/T3G	15D	12.8	100	14.3	15	15.8	1.0	21.2	1.9	12

 $(V_F = 1.1 \text{ V Max } @ I_F = 200 \text{ mA})$

				Breakdown Voltage			V _C @ I _{PP} (Note 5)			
	Device	V _{RWM}	I _R @ V _{RWM}	V _{BR} (Note 4) (V)		@ I _T	V _C	I _{PP}	V_{BR}	
Device*	Marking	Volts	nA	Min	Nom	Max	mA	V	Α	mV/°C
MMBZ27VCLT1G/T3G	27C	22	50	25.65	27	28.35	1.0	38	1.0	26
MMBZ39VCLT1G/T3G	39C	31.2	50	37.05	39	40.95	1.0	55	0.76	35.3

^{4.} V_{BR} measured at pulse test current I_T at an ambient temperature of 25°C.
5. Surge current waveform per Figure 5 and derate per Figure 6

^{*}Include SZ-prefix devices where applicable.

TYPICAL CHARACTERISTICS

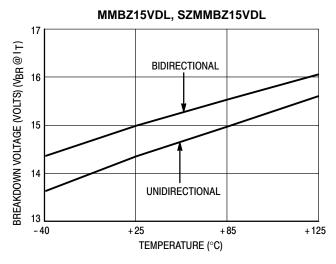


Figure 1. Typical Breakdown Voltage versus Temperature

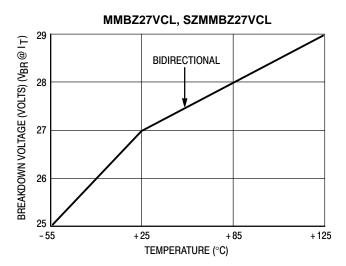


Figure 2. Typical Breakdown Voltage versus Temperature

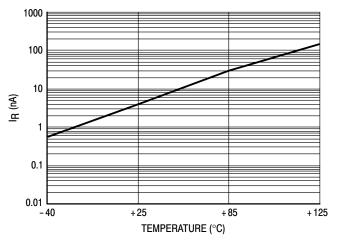


Figure 3. Typical Leakage Current versus Temperature

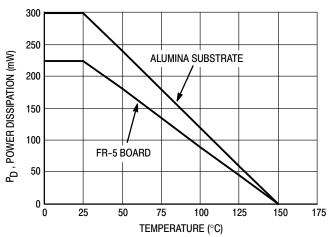


Figure 4. Steady State Power Derating Curve

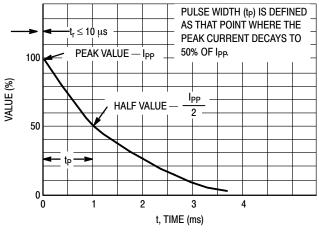


Figure 5. Pulse Waveform

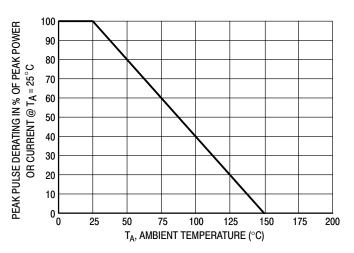


Figure 6. Pulse Derating Curve

TYPICAL APPLICATIONS

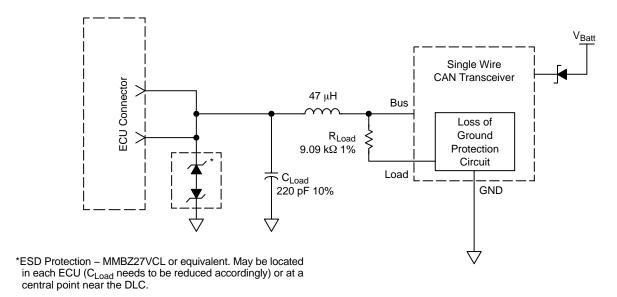
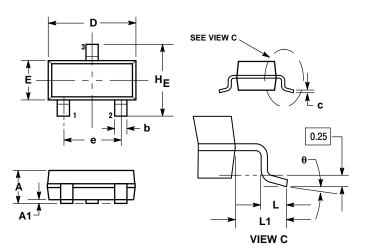



Figure 7. Single Wire CAN Network

Figure is the recommended solution for transient EMI/ESD protection. This circuit is shown in the Society of Automotive Engineers February, 2000 J2411 "Single Wire CAN Network for Vehicle Applications" specification (Figure 6, page 11). Note: the dual common anode zener configuration shown above is electrically equivalent to a dual common cathode zener configuration.

PACKAGE DIMENSIONS

SOT-23 (TO-236) CASE 318-08 **ISSUE AP**

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: INCH.


 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
 DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH,
- PROTRUSIONS, OR GATE BURRS

	M	ILLIMETE	RS	INCHES				
DIM	MIN	NOM	MAX	MIN	NOM	MAX		
Α	0.89	1.00	1.11	0.035	0.040	0.044		
A1	0.01	0.06	0.10	0.001	0.002	0.004		
b	0.37	0.44	0.50	0.015	0.018	0.020		
С	0.09	0.13	0.18	0.003	0.005	0.007		
D	2.80	2.90	3.04	0.110	0.114	0.120		
E	1.20	1.30	1.40	0.047	0.051	0.055		
е	1.78	1.90	2.04	0.070	0.075	0.081		
L	0.10	0.20	0.30	0.004	0.008	0.012		
L1	0.35	0.54	0.69	0.014	0.021	0.029		
HE	2.10	2.40	2.64	0.083	0.094	0.104		
θ	0°		10°	0°		10°		

STYLE 9:

- PIN 1. ANODE
 - ANODE
 - CATHODE

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the unarregistered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative