Resistive Product Solutions

Features: • Higher power ratings than standard thick film chips

- Absolute TCRs to ±100ppm/°C
- Impervious to Sulfur contamination, no silver present in terminations
- Absolute Tolerances to 1%
- Completely lead free and RoHS compliant without exemptions does not use lead containing glass
- Comparable in cost to standard thick film chip resistors

Electrical Specifications								
Type / Code	Power Rating(1) (Watts) @ 70ºC	Maximum Working Voltage(2)	Maximum Overload Voltage	Resistance Temperature Coefficient	Ohmic Range (Ω) and Tolerance			
					1%, 5%			
RNCP0402	0.1W	50V	100V	±100 ppm/ºC	1 - 10K			
RNCP0603	0.125W	150V	300V	±100 ppm/ºC	1 - 47K			
RNCP0805	0.25W	200V	400V	±100 ppm/ºC	1 - 100K			
RNCP1206	0.5W	200V	400V	±100 ppm/ºC	1 - 100K			

(1) Power rating for each package size is valid if ambient temp ≤80°C and terminal temp ≤105°C

(2) Lesser of \sqrt{PR} or maximum working voltage

Certain resistance values will require a high minimum order quantity. Contact Stackpole Customer Service for details.

Please refer to the High Power Resistor Application Note (page 5) for more information on designing and implementing high power resistor types.

Mechanical Specifications									
Type / Code	L Body Length	W Body Width	H Body Height	a Top Termination	b Bottom Termination	Unit			
RNCP0402	0.039 ± 0.004 / -0.002	0.020 ± 0.002	0.012 ± 0.002	0.010 ± 0.006	0.012 ± 0.006	inches			
	1.00 + 0.10 / -0.05	0.50 ± 0.05	0.30 ± 0.05	0.25 ± 0.15	0.30 ± 0.15	mm			
RNCP0603	0.059 ± 0.004	0.031 ± 0.004	0.016 ± 0.004	0.012 ± 0.008	0.016 ± 0.008	inches			
	1.50 ± 0.10	0.80 ± 0.10	0.40 ± 0.10	0.30 ± 0.20	0.40 ± 0.20	mm			
RNCP0805	0.079 ± 0.006	0.049 ± 0.006	0.020 ± 0.004	0.016 ± 0.008	0.024 ± 0.008	inches			
	2.00 ± 0.15	1.25 ± 0.15	0.50 ± 0.10	0.40 ± 0.20	0.60 ± 0.20	mm			
RNCP1206	0.122 ± 0.008	0.059 ± 0.008	0.020 ± 0.004	0.020 ± 0.012	0.028 ± 0.008	inches			
	3.10 ± 0.20	1.50 ± 0.20	0.50 ± 0.10	0.50 ± 0.30	0.70 ± 0.20	mm			

RNCP Series High Power Anti-Sulfur Thin Film Chip Resistor

Stackpole Electronics, Inc.

Resistive Product Solutions

Performance Characteristics							
Test Items Reference Standard		Condition of Test	Test Limits (∆R)				
Temperature Coefficient of Resistance	MIL-STD-202F Method 304; JIS-C5201-1-4.8	+25~ +125⁰C	± 100 ppm/⁰C				
Short Time Overload	MIL-R-55342D Paragraph 4.7.5; JIS-C5201-1-4.13	2.5 X rated voltage for 5 s.	F: ± (1% + 0.1Ω) J: ± (2% + 0.1Ω)				
High Temperature Exposure (Storage)	High TemperatureMIL-STD-2021000 h. @ T=125°C. Unpowered.xposure (Storage)Method 108Measurement at 24 ± 2 hours after test conclusion.		F: $\pm (2\% + 0.1\Omega)$ J: $\pm (2\% + 0.1\Omega)$				
Temperature Cycling	JESD22 Method JA-104 1000 cycles (-55°C to +125°C) Measurement at 24 ± 2 hours after test conclusion		F: ± (0.5% + 0.05Ω) J: ± (1% + 0.1Ω) Remark: R≤10Ω: F/J: ± (1% + 0.1Ω)				
Moisture Resistance MIL-STD-202 Method 106 1000 h., T=24 hours/cycle Notes: Steps 7a & 7b not required. Unpowered.		F: ± (1% + 0.05Ω) J: ± (2% + 0.1Ω)					
Biased Humidity	MIL-STD-202 Method 103	1000 h. 85°C / 85% RH. Note: Specified conditions: 10% of operating power. Measurement at 24 ± 2 hours after test conclusion	F: $\pm (3\% + 0.1\Omega)$ J: $\pm (3\% + 0.1\Omega)$				
Operational Life MIL-STD-202 Measurement Method 108 Conclusion. Re Mounte		1000 h. TA=125°C at rated power. Measurement at 24 ± 2 hours after test conclusion. Remark: Mounted quantity: Mounted 2 pc. on 1 PCB	F: ± (1% + 0.05Ω) J: ± (3% + 0.1Ω)				
Resistance to Soldering Heat	MIL-STD-202 Method 210	Condition B: Immerse the specimens in an eutectic solder at $260 \pm 5^{\circ}$ C for 10 ± 1 s.	F: $\pm (0.5\% + 0.05\Omega)$ J: $\pm (1\% + 0.1\Omega)$				
Solderability	Solderability J-STD-002 245 ± 5°C solder, 2 ± 0.5 s. dwell Solder: Solder, 2 ± 0.5 s. dwell		>95% area covered with tin				
Board Flex (Bending)	AEC-Q200-005	3mm deflection	F: ± (0.5% + 0.05Ω) J: ± (1% + 0.1Ω)				
Terminal Strength (SMD) AEC-Q200-006 Pressure X kgf a R0.5 pressu 0201: NA 0402: 0.5Kg 0201: NA 0402: 0.5Kg 0805: 1.0 0603: 0.5Kg		Pressure X kgf a R0.5 pressure rod for 60 s. 0201: NA 0402: 0.5Kg 0805: 1.0Kg 0603: 0.5Kg 1206: 1.8Kg	F: ± (0.5% + 0.05Ω) J: ± (1% + 0.1Ω)				

Power Derating Curve:

RNCP Series High Power Anti-Sulfur Thin Film Chip Resistor

Resistive Product Solutions

Packaging Specifications									
Type / Code	Paper Tape Pitch	А	В	W	E	F	Unit		
RNCP0402	0.079	0.028 ± 0.002	0.047 ± 0.002	0.315 ± 0.008	0.069 ± 0.004	0.138 ± 0.002	inches		
	2.00	0.70 ± 0.05	1.20 ± 0.05	8.00 ± 0.20	1.75 ± 0.10	3.50 ± 0.05	mm		
RNCP0603	0.157	0.043 ± 0.004	0.075 ± 0.004	0.315 ± 0.008	0.069 ± 0.004	0.138 ± 0.002	inches		
	4.00	1.10 ± 0.10	1.90 ± 0.10	8.00 ± 0.20	1.75 ± 0.10	3.50 ± 0.05	mm		
RNCP0805	0.157	0.063 ± 0.006	0.094 ± 0.008	0.315 ± 0.008	0.069 ± 0.004	0.138 ± 0.002	inches		
	4.00	1.60 0.15	2.40 ± 0.20	8.00 ± 0.20	1.75 ± 0.10	3.50 ± 0.05	mm		
RNCP1206	0.157	0.079 ± 0.006	0.142 ± 0.008	0.315 ± 0.008	0.069 ± 0.004	0.138 ± 0.002	inches		
	4.00	2.00 ± 0.15	3.60 ± 0.20	8.00 ± 0.20	1.75 ± 0.10	3.50 ± 0.05	mm		

Type / Code	P1	P2	P0	D0		Т	Unit
	0.079 ± 0.004	0.079 ± 0.004	0.157 ± 0.004	ø	0.059 + 0.004 / -0	0.018 ± 0.004	inches
RINGP0402	2.00 ± 0.10	2.00 ± 0.10	4.00 ± 0.10	ø	1.50 + 0.10 / -0	0.45 ± 0.10	mm
DNODOCOO	0.157 ± 0.004	0.079 ± 0.002	0.157 ± 0.004	ø	0.059 + 0.004 / -0	0.025 ± 0.004	inches
RINCF0003	4.00 ± 0.10	2.00 ± 0.05	4.00 ± 0.10	ø	1.50 + 0.10 / -0	0.64 ± 0.10	mm
DNCD0005	0.157 ± 0.004	0.079 ± 0.002	0.157 ± 0.004	ø	0.059 + 0.004 / -0	0.033 ± 0.004	inches
KINCF0005	4.00 ± 0.10	2.00 ± 0.05	4.00 ± 0.10	ø	1.50 + 0.10 / -0	0.84 ± 0.10	mm
DNCD4206	0.157 ± 0.004	0.079 ± 0.002	0.157 ± 0.004	ø	0.059 + 0.004 / -0	0.033 ± 0.004	inches
KINGP 1200	4.00 ± 0.10	2.00 ± 0.05	4.00 ± 0.10	ø	1.50 + 0.10 / -0	T 0.018 ± 0.004 0.45 ± 0.10 0.025 ± 0.004 0.64 ± 0.10 0.033 ± 0.004 0.84 ± 0.10 0.033 ± 0.004 0.84 ± 0.10	mm

Resistive Product Solutions

Reel Specifications									
Type / Code	ØA	ØB	Øc	W	Т	Unit			
	7.008 ± 0.079	2.362 ± 0.039	0.512 ± 0.039	0.354 ± 0.039	0.453 ± 0.039	inches			
KINGF	178.00 ± 2.00	60.00 ± 1.00	13.00 ± 1.00	9.00 ± 1.00	11.50 ± 1.00	mm			

Peel-off Force Specifications

Peel-off force of paper and blister tape is in accordance with "JIS-C5202", that is, 0.1 to 0.7N at a peel-off speed of 300 mm/minute.

High Power Chip Resistors and Thermal Management

Stackpole has developed several surface mount resistor series in addition to our current sense resistors, which have had higher power ratings than standard resistor chips. This has caused some uncertainty and even confusion by users as to how to reliably use these resistors at the higher power ratings in their designs.

The data sheets for the RHC, RMCP, RNCP, CSR, CSRN, CSRF, CSS, and CSSH state that the rated power assumes an ambient temperature of no more than 100 degrees C for the CSS / CSSH series and 70 degrees C for all other high power resistor series. In addition, IPC and UL best practices dictate that the combined temperature on any resistor due to power dissipated and ambient air shall be no more than 105C. At first glance this wouldn't seem too difficult, however the graph below shows typical heat rise for the CSR 1/2 100 milliohm at full rated power. The heat rise for the RMCP and RNCP would be similar. The RHC with its unique materials, design, and processes would have less heat rise and therefore would be easier to implement for any given customer.

The 102 degrees C heat rise shown here would indicate there will be additional thermal reduction techniques needed to keep this part under 105C total hot spot temperature if this part is to be used at 0.75 watts of power. However, this same part at the usual power rating for this size would have a heat rise of around 72 degrees C. This additional heat rise may be dealt with using wider conductor traces, larger solder pads and land patterns under the solder mask, heavier copper in the conductors, vias through PCB, air movement, and heat sinks, among many other techniques. Because of the variety of methods customers can use to lower the effective heat rise of the circuit, resistor manufacturers simply specify power ratings with the limitations on ambient air temperature and total hot spot temperatures and leave the details of how to best accomplish this to the design engineers. Design guidelines for products in various market segments can vary widely so it would be unnecessarily constraining for a resistor manufacturer to recommend the use of any of these methods over another.

Note: The final resistance value can be affected by the board layout and assembly process, especially the size of the mounting pads and the amount of solder used. This is especially notable for resistance values \leq 50 m Ω . This should be taken into account when designing.