N-Channel Enhancement-Mode MOSFET Transistor

Product Summary

V _{(BR)DSS} Min (V)	$\mathbf{r}_{\mathbf{DS(on)}} \operatorname{Max}(\Omega)$	$V_{GS(th)}(V)$	I _D (A)	
200	11	0.8 to 3.0	0.12	

Features

- Low On-Resistance: 9.5 Ω
- Secondary Breakdown Free: 220 V
- Low Power/Voltage Driven
- Low Input and Output Leakage
- Excellent Thermal Stability

Benefits

- Low Offset Voltage
- Full-Voltage Operation
- Easily Driven Without Buffer
- Low Error Voltage
- No High-Temperature "Run-Away"

Applications

- High-Voltage Drivers: Relays, Solenoids, Lamps, Hammers, Displays, Transistors, etc.
- Telephone Mute Switches, Ringer Circuits
- Power Supply, Converters
- Motor Control

TN2010T (R1)*

*Marking Code for TO-236

Absolute Maximum Ratings ($T_A = 25^{\circ}C$ Unless Otherwise Noted)

Parameter		Symbol	Limit	Unit	
Drain-Source Voltage		V _{DS}	200	v	
Gate-Source Voltage		V _{GS}	± 20		
Continuous Drain Current $(T_J = 150^{\circ}C)$	$T_A = 25 \degree C$	I_	0.12		
	$T_A = 70^{\circ}C$	ID	0.08	А	
Pulsed Drain Current ^a		I _{DM}	0.34		
Power Dissipation	$T_A = 25 \degree C$	D_	0.35	w	
	$T_A = 70^{\circ}C$	гD	0.22		
Maximum Junction-to-Ambient		R _{thJA}	357	°C/W	
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55 to 150	°C	

Notes

a. Pulse width limited by maximum junction temperature.

Updates to this data sheet may be obtained via facsimile by calling Siliconix FaxBack, 1-408-970-5600. Please request FaxBack document #70203.

Specifications^a

				Limits					
Parameter	Symbol	Test Conditions	Min	Typb	Max	Unit			
Static									
Drain-SourceBreakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_D = 100 μA		220		N			
Gate-Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS},I_D=0.25~mA$	0.8	1.6	3.0	v			
Gate-Body Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			±100	nA			
Zero Gate Voltage Drain Current	I _{DSS}	V_{DS} = 160 V, V_{GS} = 0 V T_{J} = -55 $^{\circ}\mathrm{C}$			1 10	μΑ			
On-State Drain Current ^c	I _{D(on)}	$V_{DS}=10~$ V, $V_{GS}=10~$ V	0.3			mA			
Drain-Source On-Resistance ^c	r _{DS(on)}	$V_{GS} = 10$ V, $I_D = 0.1$ A		9.5	11				
		$V_{GS} = 4.5 \text{ V}, I_D = 0.05 \text{ mA}$		10	15	2			
Forward Transconductance ^c	gfs	$V_{DS} = 10$ V, $I_D = 0.1$ A		300		mS			
Diode Forward Voltage	V _{SD}	$I_S = 0.085 \text{ A}, V_{GS} = 0 \text{ V}$		0.8		V			
Dynamic									
Total Gate Charge	Qg	V_{DS} = 100 V, V_{GS} = 10 V, $I_D \simeq 0.1$ A		1750		pC			
Gate-Source Charge	Qgs			275					
Gate-Drain Charge	Qgd			300					
Input Capacitance	Ciss	$V_{\rm DS}$ = 25 V, $V_{\rm GS}$ = 0 V, f = 1 MHz		35		pF			
Output Capacitance	C _{oss}			6					
Reverse Transfer Capacitance	C _{rss}			2					
Switching ^d									
Turn-On Time	t _{d(on)}			4		ns			
	t _r	$V_{DD} = 60 \text{ V}, R_L = 600 \Omega$ $I_D \approx 0.1 \text{ A} \text{ Vorm} = 10 \text{ V}$		16					
Turn-Off Time	t _{d(off)}	$R_G = 6 \Omega$		16					
	t _f			45					

Notes
a. T_A = 25°C unless otherwise noted.
b. For DESIGN AID ONLY, not subject to production testing.
c. Pulse test: PW ≤ 300 μs duty cycle ≤ 2%.
d. Switching time is essentially independent of operating temperature.

Typical Characteristics (25°C Unless Otherwise Noted)

Siliconix S-52426—Rev. C, 14-Apr-97

Typical Characteristics (25°C Unless Otherwise Noted)

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.