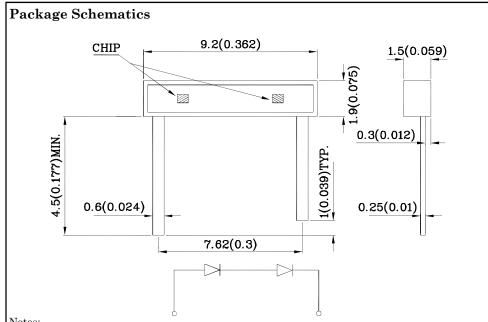


9.2mmX1.9mm SIDE VIEW

Features


- Low power consumption
- Ideal for backlighting
- RoHS compliant

ATTENTION OBSERVE PRECAUTIONS FOR HANDLING ELECTROSTATIC ${\bf DISCHARGE}$ SENSITIVE DEVICES

Notes:

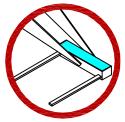
- 1. All dimensions are in millimeters (inches).
- 2. Tolerance is $\pm 0.25(0.01")$ unless otherwise noted.
- 3. Specifications are subject to change without notice.

Absolute Maximum Ratings (T _A =25°C)		CBD (InGaN)	Unit	
Reverse Voltage	V_{R}	5	V	
Forward Current	I_{F}	30	mA	
Forward Current (Peak) 1/10 Duty Cycle 0.1ms Pulse Width		150	mA	
Power Dissipation	P_{D}	240	mW	
Operating Temperature	$T_{\rm A}$			
Storage Temperature	Tstg	-40 ~ +85	°C	
Electrostatic Discharge Threshold (HBM)	250	V		
Lead Solder Temperature [2mm Below Package Base]	260°C For 3 Seconds			
Lead Solder Temperature [5mm Below Package Base]	260°C For 5 Seconds			

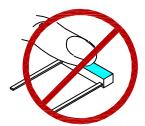
Operating Characteristics (T_A =25°C)		CBD (InGaN)	Unit
Forward Voltage (Typ.) (I _F =20mA)	V_{F}	6.6	V
Forward Voltage (Max.) (I _F =20mA)	V_{F}	8	V
Reverse Current (Max.) $(V_R=5V)$	I_R	50	uA
Wavelength of Peak Emission (Typ.) (I _F =20mA)	λP	468	nm
Wavelength of Dominant Emission (Typ.) $(I_F=20\text{mA})$	λD	470	nm
Spectral Line Full Width At Half-Maximum (Typ.) (I _F =20mA)	Δλ	25	nm
Capacitance (Typ.) (V _F =0V, f=1MHz)	С	100	pF

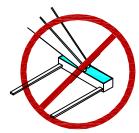
Part Number	Emitting Color	Emitting Material	Lens-color	$\begin{array}{c} \text{Luminous} \\ \text{Intensity} \\ \text{(I_F=20mA)} \\ \text{mcd} \end{array}$		Wavelength nm λP	Viewing Angle 20 1/2
				min.	typ.		
XZCBD47S	Blue	InGaN	Water Clear	120	248	468	100°

Feb 15,2012 XDSB6687 V1 Layout: Maggie L.

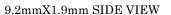

9.2mmX1.9mm SIDE VIEW

Handling Precautions

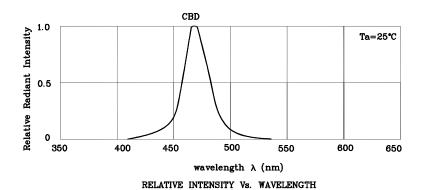

Compare to epoxy encapsulant that is hard and brittle, silicone is softer and flexible. Although its characteristic significantly reduces thermal stress, it is more susceptible to damage by external mechanical force.

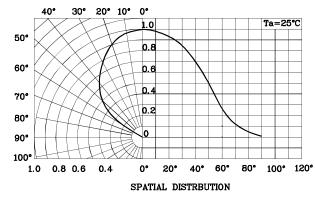

As a result, special handling precautions need to be observed during assembly using silicone encapsulated LED products. Failure to comply might lead to damage and premature failure of the LED.

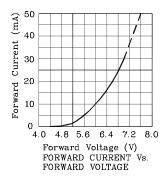
1. Handle the component along the side surfaces by using forceps or appropriate tools.

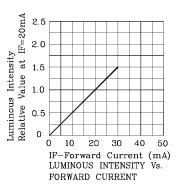


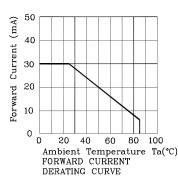
2. Do not directly touch or handle the silicone lens surface. It may damage the internal circuitry.

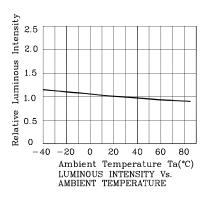


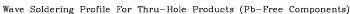

3. As silicone encapsulation is permeable to gases, some corrosive substances such as H_2S might corrode silver plating of leadframe. Special care should be taken if an LED with silicone encapsulation is to be used near such substances.

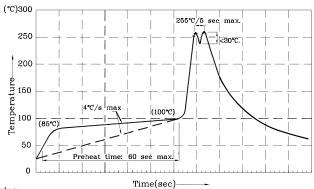









CBD



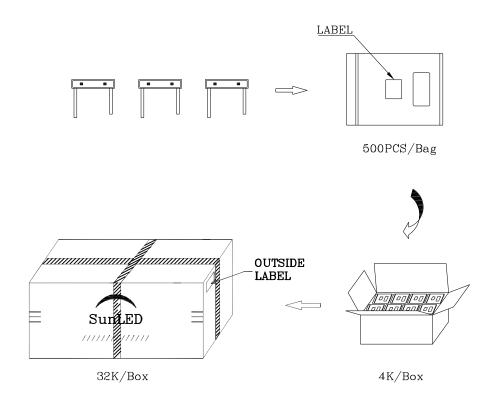
- Roces.

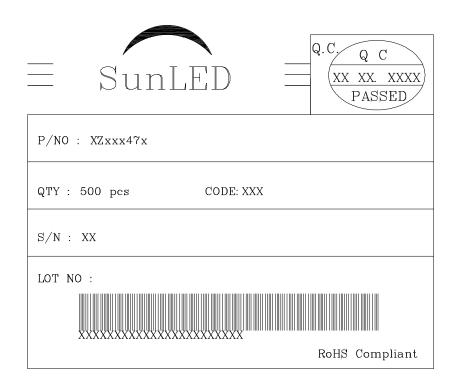
 1. Recommend pre-heat temperature of 105°C or less (as measured with a thermocouple attached to the LED pins) prior to immersion in the solder wave with a maximum solder bath temperature of 260°C
- 2.Peak wave soldering temperature between 245°C \sim 255°C for 3 sec (5 sec max).
- 3.Do not apply stress to the epoxy resin while the temperature is above 85°C. 4. Fixtures should not incur stress on the component when mounting and during soldering process. 5.SAC 305 solder alloy is recommended.
 6. No more than one wave soldering pass.

Remarks:

If special sorting is required (e.g. binning based on forward voltage, luminous intensity / luminous flux, or wavelength),

the typical accuracy of the sorting process is as follows:


- 1. Wavelength: +/-1nm
- 2. Luminous Intensity / Luminous Flux: +/-15%
- 3. Forward Voltage: +/-0.1V


Note: Accuracy may depend on the sorting parameters.

PACKING & LABEL SPECIFICATIONS

