
- A-Suffix Versions Offer 5-mV VIO
- B-Suffix Versions Offer 2-mV V_{IO}
 - Wide Range of Supply Voltages 1.4 V to 16 V
- True Single-Supply Operation
- Common-Mode Input Voltage Includes the Negative Rail
- Low Noise ... 30 nV/\(\bar{Hz}\) Typ at f = 1 kHz (High-Bias Versions)

description

The TLC252, TLC25L2, and TLC25M2 are low-cost, low-power dual operational amplifiers designed to operate with single or dual supplies. These devices utilize the Texas Instruments

symbol (each amplifier)

silicon gate LinCMOS[™] process, giving them stable input offset voltages that are available in selected grades of 2, 5, or 10 mV maximum, very high input impedances, and extremely low input offset and bias currents. Because the input common-mode range extends to the negative rail and the power consumption is extremely low, this series is ideally suited for battery-powered or energy-conserving applications. The series offers operation down to a 1.4-V supply, is stable at unity gain, and has excellent noise characteristics.

These devices have internal electrostatic-discharge (ESD) protection circuits that prevent catastrophic failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.1. However, care should be exercised in handling these devices as exposure to ESD may result in a degradation of the device parametric performance.

	Viemov		PACKAGED DEVICES		CHIP FORM
TA	V _{IO} max AT 25°C	SMALL OUTLINE (D)	PLASTIC DIP (P)	TSSOP (PW)	(Y)
	10 mV 5 mV 2 mV	TLC252CD TLC252ACD TLC252BCD	TLC252CP TLC252ACP TLC252BCP	TLC252CPW TLC252ACPW TLC252BCPW	TLC252Y — —
0°C to 70°C	10 mV 5 mV 2 mV	TLC25L2CD TLC25L2ACD TLC25L2BCD	TLC25L2CP TLC25L2ACP TLC25L2BCP	TLC25L2CPW TLC25L2ACPW TLC25L2BCPW	TLC25L2Y — —
	10 mV 5 mV 2 mV	TLC25M2CD TLC25M2ACD TLC25M2BCD	TLC25M2CP TLC25M2ACP TLC25M2BCP		TLC25M2Y — —

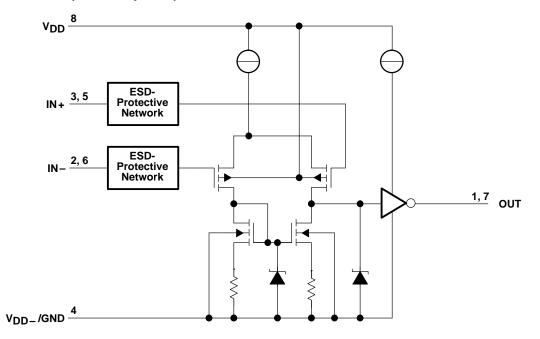
AVAILABLE OPTIONS

The D package is available taped and reeled. Add the suffix R to the device type (e.g., TLC252CDR). Chips are tested at 25°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

LinCMOS is a trademark of Texas Instruments.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

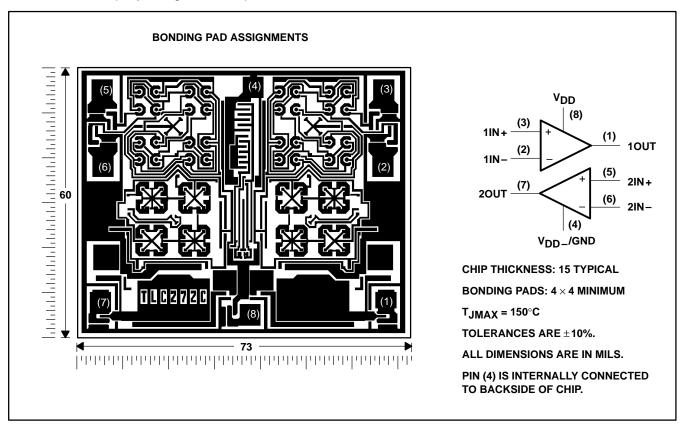

Copyright © 2001, Texas Instruments Incorporated

SLOS002I – JUNE 1983 – REVISED MARCH 2001

description (continued)

Because of the extremely high input impedance and low input bias and offset currents, applications for the TLC252/25 2 series include many areas that have previously been limited to BIFET and NFET product types. Any circuit using high-impedance elements and requiring small offset errors is a good candidate for cost-effective use of these devices. Many features associated with bipolar technology are available with LinCMOS[™] operational amplifiers without the power penalties of traditional bipolar devices. General applications such as transducer interfacing, analog calculations, amplifier blocks, active filters, and signal buffering are all easily designed with the TLC252/25_2 series devices. Remote and inaccessible equipment applications are possible using their low-voltage and low-power capabilities. The TLC252/25_2 series is well suited to solve the difficult problems associated with single-battery and solar-cell-powered applications. This series includes devices that are characterized for the commercial temperature range and are available in 8-pin plastic dip and the small-outline package. The device is also available in chip form.

The TLC252/25 2 series is characterized for operation from 0°C to 70°C.


equivalent schematic (each amplifier)

SLOS002I - JUNE 1983 - REVISED MARCH 2001

TLC252Y, TLC25L2Y, and TLC25M2Y chip information

These chips, properly assembled, display characteristics similar to the TLC252/25 2. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform.

SLOS002I – JUNE 1983 – REVISED MARCH 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage, V _{DD} (see Note 1)	18 V
Differential input voltage, VID (see Note 2)	
Input voltage range, V _I (any input)	0.3 V to 18 V
Duration of short circuit at (or below) 25°C free-air temperature (see Note 3)	unlimited
Continuous total dissipation	. See Dissipation Rating Table
Operating free-air temperature range, T _A	0°C to 70°C
Storage temperature range	−65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, except differential voltages, are with respect to V_D_/GND.

2. Differential voltages are at IN+, with respect to IN-.

3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure the maximum dissipation rating is not exceeded.

	DISSIPATIC	N RATING TABLE	
PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING
D	725 mW	5.8 mW/°C	464 mW
Р	1000 mW	8.0 mW/°C	640 mW
PW	525 mW	4.2 mW/°C	336 mW

recommended operating conditions

		MIN	MAX	UNIT
Supply voltage, V _{DD}		1.4	16	V
	$V_{DD} = 1.4 V$	0	0.2	
Common mode input veltage V/ve	$V_{DD} = 5 V$	-0.2	4	V
Common-mode input voltage, VIC	V _{DD} = 10 V	-0.2	9	v
	V _{DD} = 16 V	-0.2	14	
Operating free-air temperature, T _A		0	70	°C

SLOS002I - JUNE 1983 - REVISED MARCH 2001

		TED	TEST CONDITION	uet	TL	C252_	С	TL	C25L2	_C	TL	C25M2	_C	UNIT
	PARAME	IER	TEST CONDITION	151	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
				25°C			10			10			10	
		TLC25_2C		0°C to 70°C			12			12			12	
	Input		V _O = 0.2 V,	25°C			5			5			5	
VIO	offset voltage	TLC25_2AC	$R_{S} = 50 \Omega$	0°C to 70°C			6.5			6.5			6.5	mV
				25°C			2			2			2	
		TLC25_2BC		0°C to 70°C			3			3			3	
αNO	-	temperature nt of input tage		25°C to 70°C		1			1			1		μV/°C
				25°C		1	60		1	60		1	60	
IIO	Input offs	set current	V _O = 0.2 V	0°C to 70°C			300			300			300	pА
				25°C		1	60		1	60		1	60	
I _{IB}	Input bia	s current	V _O = 0.2 V	0°C to 70°C			600			600			600	pА
VICR	Commor voltage r	-mode input ange		25°C	0 to 0.2			0 to 0.2			0 to 0.2			V
VOM	Peak out swing‡	put voltage	V _{ID} = 100 mV	25°C	450	700		450	700		450	700		mV
AVD	Large-siç differenti amplifica	al voltage	V_{O} = 100 to 300 mV, R _S = 50 Ω	25°C		10			20			20		V/mV
CMRR	Commor rejection		$V_{O} = 0.2 V,$ $V_{IC} = V_{ICR}min$	25°C	60	77		60	77		60	77		dB
I _{DD}	Supply c	urrent	V _O = 0.2 V, No load	25°C		300	375		25	34		200	250	μA

[†] All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified. Unless otherwise noted, an output load resistor is connected from the output to ground and has the following value: for low bias $R_L = 1 M\Omega$, for medium bias $R_L = 100 k\Omega$, and for high bias $R_L = 100 k\Omega$.

 R_L = 100 k Ω , and for high bias R_L = 10 k Ω . [‡] The output swings to the potential of V_{DD}_/GND.

operating characteristics, V_{DD} = 1.4 V, T_A = 25°C

	PARAMETER	TEST CONDITIONS	TLC252_C		TLC25L2_C			TLC25M2_C			UNIT	
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	MIN TYP MAX		UNIT
В ₁	Unity-gain bandwidth	$\begin{array}{l} A_V = 40 \text{ dB},\\ C_L = 10 \text{ pF},\\ R_S = 50 \ \Omega \end{array}$		12			12			12		kHz
SR	Slew rate at unity gain	See Figure 1		0.1			0.001			0.01		V/µs
	Overshoot factor	See Figure 1		30%			35%			35%		

electrical characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted)

	PARAMETER		TEST COND	DITIONS	т _А †		2C, TLC2 _C252B(UNIT
						MIN	TYP	MAX	
		TLC252C	V _O = 1.4 V,	V _{IC} = 0,	25°C		1.1	10	
		1102520	R _S = 50 Ω,	$R_L = 10 k\Omega$	Full range			12	
VIO	Input offect voltage	TLC252AC	V _O = 1.4 V,	V _{IC} = 0,	25°C		0.9	5	mV
۷Ю	Input offset voltage	TLC252AC	R _S = 50 Ω,	$R_L = 10 \ k\Omega$	Full range			6.5	IIIV
		TLC252BC	V _O = 1.4 V,	V _{IC} = 0,	25°C		0.23	2	
		12023280	R _S = 50 Ω,	$R_L = 10 k\Omega$	Full range			3	
αΛΙΟ	Average temperature co input offset voltage	efficient of			25°C to 70°C		1.8		μV/°C
li o	Input offect ourrent (coo	Note (1)		$V_{10} = 2.5 V_{10}$	25°C		0.1	60	n A
10	Input offset current (see	Note 4)	V _O = 2.5 V,	V _{IC} = 2.5 V	70°C		7	300	рА
lun.	Input bias current (see N	lote (1)	V _O = 2.5 V,	V _{IC} = 2.5 V	25°C		0.6	60	pА
IВ	input bias current (see h	NOLE 4)	VO = 2.3 V,	VIC = 2.5 V	70°C		40	600	рА
、 <i>,</i>	Common-mode input vo	Itage			25°C	-0.2 to 4	-0.3 to 4.2		V
VICR	range (see Note 5)	U			Full range	-0.2 to 3.5			V
					25°C	3.2	3.8		
VOH	High-level output voltage	е	V _{ID} = 100 mV,	$R_L = 10 \ k\Omega$	0°C	3	3.8		V
					70°C	3	3.8		
					25°C		0	50	
VOL	Low-level output voltage)	$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	0°C		0	50	mV
					70°C		0	50	
	Laura al an al d'Mana d'al a				25°C	5	23		
AVD	Large-signal differential amplification	voltage	$V_{O} = 0.25 V \text{ to } 2 V,$	$R_L = 10 \text{ k}\Omega$	O°C	4	27		V/mV
					70°C	4	20		
					25°C	65	80		
CMRR	Common-mode rejection	n ratio	$V_{IC} = V_{ICR}min$		O°C	60	84		dB
					70°C	60	85		
		ratio			25°C	65	95		
^k SVR	Supply-voltage rejection ($\Delta V_{DD}/\Delta V_{DD}$)	TallU	$V_{DD} = 5 V \text{ to } 10 V,$	V _O = 1.4 V	O°C	60	94		dB
					70°C	60	96		
			V _O = 2.5 V,	V _{IC} = 2.5 V,	25°C		1.4	3.2	
IDD	Supply current (two amp	olifiers)	VO = 2.5 V, No load	v IC = 2.5 v,	0°C		1.6	3.6	mA
					70°C		1.2	2.6	

[†] Full range is 0°C to 70°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

SLOS002I – JUNE 1983 – REVISED MARCH 2001

electrical characteristics at specified free-air temperature, V_{DD} = 10 V (unless otherwise noted)

	PARAMETER		TEST CONE	DITIONS	т _А †		2C, TLC2 LC252B(UNIT
						MIN	TYP	MAX	
			V _O = 1.4 V,	V _{IC} = 0,	25°C		1.1	10	
		TLC252C	R _S = 50 Ω,	$R_L = 10 k\Omega$	Full range			12	
V/	Input offect velteres	TLC252AC	V _O = 1.4 V,	V _{IC} = 0,	25°C		0.9	5	mV
VIO	Input offset voltage	TLC252AC	R _S = 50 Ω,	$R_L = 10 k\Omega$	Full range			6.5	mv
		TLC252BC	V _O = 1.4 V,	VIC = 0,	25°C		0.29	2	
		1023200	R _S = 50 Ω,	$R_L = 10 k\Omega$	Full range			3	
αΛΙΟ	Average temperature coeffi offset voltage	cient of input			25°C to 70°C		2		μV/°C
l. a	Input offect ourrest (one No	to (1)			25°C		0.1	60	~^
IIO	Input offset current (see No	le 4)	V _O = 2.5 V,	VIC = 2.5 V	70°C		7	300	рА
lu-	Input biog ourrent (ago Note	A)	$V_{2} = 25 V_{1}$	V _{IC} = 2.5 V	25°C		0.6	60	рА
IВ	Input bias current (see Note	; 4)	V _O = 2.5 V,	vIC = 2.5 v	70°C		50	600	рА
	Common-mode input voltage	le			25°C	-0.2 to 9	-0.3 to 9.2		V
VICR	range (see Note 5)				Full range	-0.2 to 8.5			V
					25°C	8	8.5		
Vон	High-level output voltage		V _{ID} = 100 mV,	$R_L = 10 \ k\Omega$	0°C	8	8.5		V
					70°C	7.8	8.4		
					25°C		0	50	
VOL	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	IOT = 0	0°C		0	50	mV
					70°C		0	50	
					25°C	10	36		
AVD	Large-signal differential volt amplification	age	$V_{O} = 1 V \text{ to } 6 V,$	$R_L = 10 \ k\Omega$	0°C	7.5	42		V/mV
	ampinioation				70°C	7.5	32		
					25°C	65	85		
CMRR	Common-mode rejection ra	tio	$V_{IC} = V_{ICR}min$		0°C	60	88		dB
					70°C	60	88		
	Our a hu walka su mula atla				25°C	65	95		
ksvr	Supply-voltage rejection rat (ΔVDD/ΔVDD)	IU	$V_{DD} = 5 V \text{ to } 10 V,$	V _O = 1.4 V	0°C	60	94		dB
					70°C	60	96		
				V _{IC} = 5 V,	25°C		1.9	4	
IDD	Supply current (two amplifie	ers)	V _O = 5 V, No load	$V_{\rm IC} = 0 V,$	0°C		2.3	4.4	mA
					70°C		1.6	3.4	

[†] Full range is 0°C to 70°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

operating characteristics, V_{DD} = 5 V

	PARAMETER		TEST CONDITI	ONS	Тд	TLC252 TL	C, TLC2 .C252B0		UNIT
						MIN	TYP	MAX	
					25°C		3.6		
				VI(PP) = 1 V	0°C		4		
CD	Clow rate at unity gain	R _L = 10 kΩ,	CL = 20 pF,		70°C		3		1////
SR	Slew rate at unity gain	See Figure 1			25°C		2.9		V/μs
				VI(PP) = 2.5 V	0°C		3.1		
					70°C		2.5		
Vn	Equivalent input noise voltage	f = 1 kHz,	R _S = 20 Ω,	See Figure 2	25°C		25		nV/√Hz
				_	25°C		320		
Вом	Maximum output-swing bandwidth	VO = VOH, See Figure	C _L = 20 pF,	R _L = 100 kΩ,	0°C		340		kHz
		Seerigure			70°C		260		
					25°C		1.7		
B ₁	Unity-gain bandwidth	Vj = 10 mV,	C _L = 20 pF,	See Figure 3	0°C		2		MHz
					70°C		1.3		
			<i>.</i> .	o	25°C		46°		
[¢] m	Phase margin	V _I = 10 mV, See Figure 3	f = B ₁ ,	C _L = 20 pF,	0°C		47°		1
					70°C		43°		

operating characteristics, $V_{DD} = 10 V$

	PARAMETER		TEST CONDITI	ONS	Тд	TLC252 TL	C, TLC2 C252B0		UNIT
						MIN	TYP	MAX	
					25°C		5.3		
				V _{I(PP)} = 1 V	0°C		5.9		
SR	Slew rate at unity gain	$R_L = 10 k\Omega$,	C _L = 20 pF,		70°C		4.3		V/µs
SK	Siew fale at unity gain	See Figure 1			25°C		4.6		v/µs
				VI(PP) = 5.5 V	0°C		5.1		
					70°C		3.8		
Vn	Equivalent input noise voltage	f = 1 kHz,	R _S = 20 Ω,	See Figure 2	25°C		25		nV/√Hz
				-	25°C		200		
ВОМ	Maximum output-swing bandwidth	VO = VOH, See Figure 1	C _L = 20 pF,	R _L = 100 kΩ,	0°C		220		kHz
		occ rigare r			70°C		140		
					25°C		2.2		
B ₁	Unity-gain bandwidth	Vj = 10 mV,	C _L = 20 pF,	See Figure 3	0°C		2.5		MHz
					70°C		1.8		
		10	(D	0 00 - 5	25°C		49°		
[¢] m	Phase margin	V _I = 10 mV, See Figure 3	f = B ₁ ,	C _L = 20 pF,	0°C		50°		
		guio o			70°C		46°		

SLOS002I – JUNE 1983 – REVISED MARCH 2001

electrical characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted)

	PARAMETER		TEST CON	DITIONS	τ _A †	TL	LC25L20 C25L2A C25L2B	C	UNIT
						MIN	TYP	MAX	
		TLC252C	V _O = 1.4 V,	V _{IC} = 0,	25°C		1.1	10	
		1602320	R _S = 50 Ω,	$R_L = 1 M\Omega$	Full range			12	
VIO	Input offset voltage	TLC252AC	V _O = 1.4 V,	$V_{IC} = 0,$	25°C		0.9	5	mV
٩O	input onset voltage	TEOZOZAO	R _S = 50 Ω,	$R_L = 1 M\Omega$	Full range			6.5	
		TLC252BC	V _O = 1.4 V,	$V_{IC} = 0,$	25°C		0.204	2	
			R _S = 50 Ω,	$R_L = 1 M\Omega$	Full range			3	
αVIO	Average temperature co input offset voltage	efficient of			25°C to 70°C		1.1		μV/°C
li o	Input offset current (see	Note 4)	V _O = 2.5 V,	V _{IC} = 2.5 V	25°C		0.1	60	рA
ΙΟ	input onset current (see	Note 4)	vO = 2.5 v,	VIC = 2.5 V	70°C		7	300	рА
10	Input bias current (see N	loto (1)	$V_{0} = 25 V$	$V_{10} = 2.5 V_{10}$	25°C		0.6	60	n۸
IВ	input bias current (see h	NOLE 4)	V _O = 2.5 V,	V _{IC} = 2.5 V	70°C		50	600	рА
	Common-mode input vo	Itage			25°C	-0.2 to 4	-0.3 to 4.2		V
VICR	range (see Note 5)				Full range	-0.2 to 3.5			v
					25°C	3.2	4.1		
Vон	High-level output voltage	e	V _{ID} = 100 mV,	$R_L = 1 M\Omega$	0°C	3	4.1		V
					70°C	3	4.2		
					25°C		0	50	
VOL	Low-level output voltage	•	$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	0°C		0	50	mV
					70°C		0	50	
	Lorgo oignol differential	valtaga			25°C	50	700		
AVD	Large-signal differential amplification	vollage	$V_{O} = 0.25 V \text{ to } 2 V,$	$R_L = 1 M\Omega$	0°C	50	700		V/mV
					70°C	50	380		
					25°C	65	94		
CMRR	Common-mode rejection	n ratio	$V_{IC} = V_{ICR}min$		0°C	60	95		dB
					70°C	60	95		
	Supply-voltage rejection	ratio			25°C	70	97		
^k SVR	$(\Delta V_{DD}/\Delta V_{DD})$	rallu	$V_{DD} = 5 V \text{ to } 10 V,$	V _O = 1.4 V	0°C	60	97		dB
					70°C	60	98		
			V _O = 2.5 V,	VIC = 2.5 V,	25°C		20	34	
IDD	Supply current (two amp	olifiers)	VO = 2.5 V, No load	$V_{\rm IC} = 2.5 V,$	0°C		24	42	μA
					70°C		16	28	

[†] Full range is 0°C to 70°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

electrical characteristics at specified free-air temperature, V_{DD} = 10 V (unless otherwise noted)

	PARAMETER		TEST CON	DITIONS	т _А †	TL	LC25L20 C25L2A C25L2B	С	UNIT
						MIN	TYP	MAX	
		TLC252C	V _O = 1.4 V,	V _{IC} = 0,	25°C		1.1	10	
		1202520	R _S = 50 Ω,	$R_L = 1 M\Omega$	Full range			12	
VIO	Input offset voltage	TLC252AC	V _O = 1.4 V,	V _{IC} = 0,	25°C		0.9	5	mV
VIO	input onset voltage	TEOZJZAC	R _S = 50 Ω,	$R_L = 1 M\Omega$	Full range			6.5	111 V
		TLC252BC	V _O = 1.4 V,	$V_{IC} = 0,$	25°C		0.235	2	
		12023280	R _S = 50 Ω,	$R_L = 1 M\Omega$	Full range			3	
αNIO	Average temperature con input offset voltage	pefficient of			25°C to 70°C		1		μV/°C
l	Innut offent ourrent (no	Note 4)	V _O = 5 V,		25°C		0.1	60	-
IO	input onset current (see	offset current (see Note 4) bias current (see Note 4)		V _{IC} = 5 V	70°C		8	300	рА
	Innut biog gurrant (ogg	Note ()			25°C		0.7	60	-
IВ	input bias current (see	NOLE 4)	V _O = 5 V,	VIC = 5 V	70°C		50	600	pА
	Common-mode input v	oltage			25°C	-0.2 to 9	-0.3 to 9.2		v
VICR	range (see Note 5)	Silligo			Full range	-0.2 to 8.5			v
					25°C	8	8.9		
Vон	High-level output voltag	je	V _{ID} = 100 mV,	$R_L = 1 M\Omega$	0°C	7.8	8.9		V
					70°C	7.8	8.9		
					25°C		0	50	
VOL	Low-level output voltag	e	$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	0°C		0	50	mV
					70°C		0	50	
					25°C	50	860		
AVD	Large-signal differentia	voltage	$V_{O} = 1 V \text{ to } 6 V,$	$R_L = 1 M\Omega$	0°C	50	1025		V/mV
	ampinioation				70°C	50	660		
					25°C	65	97		
CMRR	Common-mode rejection	on ratio	VIC = VICRmin		0°C	60	97		dB
					70°C	60	97		
	.				25°C	70	97		
^k SVR	Supply-voltage rejection (ΔVDD/ΔVDD)	n ratio	$V_{DD} = 5 V \text{ to } 10 V,$	V _O = 1.4 V	0°C	60	97		dB
	יטטי≚יטטי				70°C	60	98		
					25°C		29	46	
IDD	Supply current (two am	plifiers)	$V_O = 5 V$, No load	V _{IC} = 5 V,	0°C		36	66	μA
					70°C		22	40	

[†] Full range is 0°C to 70°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

operating characteristics, $V_{DD} = 5 V$

	PARAMETER			ONS	тд	TL TLO TLO	C	UNIT	
						MIN	TYP	MAX	
					25°C		0.03		
				VI(PP) = 1 V	0°C		0.04		
SR	Slow rate at unity gain	$R_L = 1 M\Omega$,	C _L = 20 pF,		70°C		0.03		1////
SK	Slew rate at unity gain	See Figure 1			25°C		0.03		V/μs
				V _{I(PP)} = 2.5 V	0°C		0.03		
					70°C		0.02		
Vn	Equivalent input noise voltage	f = 1 kHz,	R _S = 20 Ω,	See Figure 2	25°C		68		nV/√Hz
				B (110	25°C		5		
Вом	Maximum output-swing bandwidth	V _O = V _{OH} , See Figure	C _L = 20 pF,	$R_{L} = 1 M\Omega$,	0°C		6		kHz
	bandwidth	occ rigure			70°C		4.5		
					25°C		85		
B ₁	Unity-gain bandwidth	Vj = 10 mV,	C _L = 20 pF,	See Figure 3	0°C		100		MHz
					70°C		65		
		10 mV	(0 00 = 5	25°C		34°		
фт	Phase margin	V _I = 10 mV, See Figure 3	$f = B_1,$	C _L = 20 pF,	0°C		36°		
		guio o			70°C		30°		

operating characteristics, $V_{DD} = 10 V$

	PARAMETER		TEST CONDITIO	DNS	тд	TL TL(TL(C	UNIT	
						MIN	TYP	MAX	
					25°C		0.05		
				VI(PP) = 1 V	0°C		0.05		
SR	Slow rate at unity gain	$R_L = 1 M\Omega$,	C _L = 20 pF,		70°C		0.04		\//ue
SK	Slew rate at unity gain	See Figure 1			25°C		0.04		V/μs
				VI(PP) = 5.5 V	0°C		0.05		
					70°C		0.04		
Vn	Equivalent input noise voltage	f = 1 kHz,	R _S = 20 Ω,	See Figure 2	25°C		68		nV/√Hz
	•• • • • •			B (146	25°C		1		
BOM	Maximum output-swing bandwidth	VO = VOH, See Figure 1	C _L = 20 pF,	$R_{L} = 1 M\Omega$,	0°C		1.3		kHz
	bandwidth	eee rigare r			70°C		0.9		
					25°C		110		
B ₁	Unity-gain bandwidth	Vj = 10 mV,	CL = 20 pF,	See Figure 3	0°C		125		MHz
					70°C		90		
		10	(0 00 = 5	25°C		38°		
∮m	∮m Phase margin	V _I = 10 mV, See Figure 3	f = B ₁ ,	C _L = 20 pF,	0°C		40°		
					70°C		34°		

electrical characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted)

	PARAMETER		TEST CON	DITIONS	T _A †	TL	.C25M20 C25M2A C25M2B	С	UNIT
						MIN	TYP	MAX	
		TLC252C	V _O = 1.4 V,	V _{IC} = 0,	25°C		1.1	10	
		1102520	R _S = 50 Ω,	$R_L = 100 \text{ k}\Omega$	Full range			12	
Vie	Input offect voltage	TLC252AC	V _O = 1.4 V,	V _{IC} = 0,	25°C		0.9	5	mV
VIO	Input offset voltage	TLC252AC	R _S = 50 Ω,	$R_L = 100 \text{ k}\Omega$	Full range			6.5	IIIV
		TLC252BC	V _O = 1.4 V,	V _{IC} = 0,	25°C		0.22	2	
		TECZUZEC	R _S = 50 Ω,	$R_L = 100 \text{ k}\Omega$	Full range			3	
ανιο	Average temperature co input offset voltage	pefficient of			25°C to 70°C		1.7		μV/°C
l	Input offect ourrest (acc	Note ()			25°C		0.1	60	~ ^
10	Input offset current (see	e Note 4)	V _O = 2.5 V,	V _{IC} = 2.5 V	70°C		7	300	pА
	Innut biog gurrant (ago	Note ()			25°C		0.6	60	~ ^
IВ	Input bias current (see	Note 4)	V _O = 2.5 V,	VIC = 2.5 V	70°C		40	600	pА
	Common-mode input vo	oltage			25°C	-0.2 to 4	-0.3 to 4.2		V
VICR	range (see Note 5)	Sidge			Full range	-0.2 to 3.5			v
					25°C	3.2	3.9		
Vон	High-level output voltag	e	V _{ID} = 100 mV,	$R_L = 100 \text{ k}\Omega$	0°C	3	3.9		V
					70°C	3	4		
					25°C		0	50	
VOL	Low-level output voltage	е	$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	0°C		0	50	mV
					70°C		0	50	
					25°C	25	170		
AVD	Large-signal differential amplification	voltage	$V_{O} = 0.25 V \text{ to } 2 V,$	$R_L = 100 \text{ k}\Omega$	0°C	15	200		V/mV
	ampinioation				70°C	15	140		
					25°C	65	91		
CMRR	Common-mode rejectio	n ratio	$V_{IC} = V_{ICR}min$		0°C	60	91		dB
					70°C	60	92		
	0				25°C	70	93		
^k svr	Supply-voltage rejection (ΔVDD/ΔVDD)	n ratio	$V_{DD} = 5 V \text{ to } 10 V,$	V _O = 1.4 V	0°C	60	92		dB
					70°C	60	94		
					25°C		210	560	
IDD	Supply current (two am	plifiers)	$V_{O} = 2.5 V$, No load	V _{IC} = 2.5 V,	0°C		250	640	μA
					70°C		170	440	

[†] Full range is 0°C to 70°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

SLOS002I – JUNE 1983 – REVISED MARCH 2001

electrical characteristics at specified free-air temperature, V_{DD} = 10 V (unless otherwise noted)

	PARAMETER		TEST CONI	DITIONS	т _А †	TL	-C25M2(C25M2A C25M2B	С	UNIT
						MIN	TYP	MAX	
		TLC252C	V _O = 1.4 V,	V _{IC} = 0,	25°C		1.1	10	
		1102320	R _S = 50 Ω,	$R_L = 100 \text{ k}\Omega$	Full range			12	
VIO	Input offset voltage	TLC252AC	V _O = 1.4 V,	VIC = 0,	25°C		0.9	5	mV
10	input onset voltage	120202/10	R _S = 50 Ω,	$R_L = 100 \text{ k}\Omega$	Full range			6.5	
		TLC252BC	V _O = 1.4 V,	$V_{IC} = 0,$	25°C		0.224	2	
			R _S = 50 Ω,	$R_L = 100 \text{ k}\Omega$	Full range			3	
αVIO	Average temperature co input offset voltage	efficient of			25°C to 70°C		2.1		μV/°C
ho	Input offset current (see	Note 1)	V _O = 5 V,	V _{IC} = 5 V	25°C		0.1	60	pА
10	input onset current (see	NOLE 4)	VO = 3 V,	VIC = 3 V	70°C		7	300	PΑ
lin	Input bias current (see N	lote 1)	V _O = 5 V,	VIC = 5 V	25°C		0.7	60	pА
IВ	input bias current (see N	10(8 4)	VO = 5 V,	V C = 3	70°C		50	600	PΑ
					25°C	-0.2 to 9	-0.3 to 9.2		V
VICR	Common-mode input vol range (see Note 5)	tage			Full range	-0.2 to 8.5	5.2		V
					25°C	8	8.7		
Vон	High-level output voltage	9	V _{ID} = 100 mV,	$R_L = 100 \text{ k}\Omega$	0°C	7.8	8.7		V
					70°C	7.8	8.7		
					25°C		0	50	
VOL	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	0°C		0	50	mV
					70°C		0	50	
	Lorgo oignol differential	volto ao			25°C	25	275		
AVD	Large-signal differential amplification	vollage	$V_{O} = 1 V \text{ to } 6 V,$	$R_L = 100 \text{ k}\Omega$	O°C	15	320		V/mV
	•				70°C	15	230		
					25°C	65	94		
CMRR	Common-mode rejection	n ratio	$V_{IC} = V_{ICR}min$		0°C	60	94		dB
					70°C	60	94		
	Supply-voltage rejection	ratio			25°C	70	93		
^k SVR	$(\Delta V_{DD}/\Delta V_{DD})$		$V_{DD} = 5 V \text{ to } 10 V,$	V _O = 1.4 V	0°C	60	92		dB
					70°C	60	94		
			V _O = 5 V,	V _{IC} = 5 V,	25°C		285	600	
IDD	Supply current (two amp	lifiers)	No load		0°C		345	800	μA
					70°C		220	560	

[†] Full range is 0°C to 70°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

operating characteristics, V_{DD} = 5 V

	PARAMETER		TEST CONDITI	ONS	тд	TL TL(TL(C	UNIT	
						MIN	TYP	MAX	
					25°C		0.43		
				VI(PP) = 1 V	0°C		0.46		
SR	Slow rote at unity gain	R _L = 100 kΩ,	C _L = 20 pF,		70°C		0.36)//uo
SK	Slew rate at unity gain	See Figure 1			25°C		0.40		V/µs
				V _{I(PP)} = 2.5 V	0°C		0.43		
					70°C		0.34		
Vn	Equivalent input noise voltage	f = 1 kHz,	R _S = 20 Ω,	See Figure 2	25°C		32		nV/√ Hz
		., .,	o oo -		25°C		55		
Вом	Maximum output-swing bandwidth	V _O = V _{OH} , See Figure	$C_{L} = 20 \text{ pF},$	R _L = 100 kΩ,	0°C		60		kHz
		occ rigare			70°C		50		
					25°C		525		
B ₁	Unity-gain bandwidth	Vj = 10 mV,	C _L = 20 pF,	See Figure 3	0°C		600		MHz
					70°C		400		
		\/	(D	0. 00 = 5	25°C		40°		
φm	Phase margin	V _I = 10 mV, See Figure 3	$f = B_1,$	C _L = 20 pF,	0°C		41°		
	n Fliase fliaigill	guio o			70°C		39°		

operating characteristics, V_{DD} = 10 V

	PARAMETER			ONS	ТА	TL TLO TLO	C	UNIT	
						MIN	TYP	MAX	
					25°C		0.62		
				VI(PP) = 1 V	0°C		0.67		
SR	Slew rate at unity gain	R _L = 100 kΩ,	C _L = 20 pF,		70°C		0.51		\//ue
SK	Siew rate at unity gain	See Figure 1			25°C		0.56		V/μs
				VI(PP) = 5.5 V	0°C		0.61		
					70°C		0.46		
Vn	Equivalent input noise voltage	f = 1 kHz,	R _S = 20 Ω,	See Figure 2	25°C		32		nV/√Hz
				D	25°C		35		
BOM	Maximum output-swing bandwidth	V _O = V _{OH} , See Figure 1	C _L = 20 pF,	R _L = 100 kΩ,	0°C		40		kHz
		eee rigare r			70°C		30		
					25°C		635		
B ₁	Unity-gain bandwidth	Vj = 10 mV,	C _L = 20 pF,	See Figure 3	0°C		710		MHz
					70°C		510		
		V 40 mV	<u> </u>	0 00 = 5	25°C		43°		
φm	m Phase margin	V _I = 10 mV, See Figure 3	$f = B_1,$	C _L = 20 pF,	0°C		44°		
		J.J.J. Suid C			70°C		42°		

SLOS002I - JUNE 1983 - REVISED MARCH 2001

electrical characteristics, V_{DD} = 5 V, T_A = 25°C

		TEST CONDITIONS	Т	LC252	Y	Т	LC25L2	Y	TL	C25M2	Y	LINUT
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
VIO	Input offset voltage			1.1	10		1.1	10		1.1	10	mV
αΛΙΟ	Average temperature coefficient of input offset voltage			1.8			1.1			1.7		μV/°C
IIO	Input offset current (see Note 4)	$V_{O} = V_{DD}/2, V_{IC} = V_{DD}/2$		0.1	60		0.1	60		0.1	60	pА
I _{IB}	Input bias current (see Note 4)	$V_{O} = V_{DD}/2, V_{IC} = V_{DD}/2$		0.6	60		0.6	60		0.6	60	pА
VICR	Common-mode input voltage range (see Note 5)		-0.2 to 4	-0.3 to 4.2		-0.2 to 4	-0.3 to 4.2		-0.2 to 4	-0.3 to 4.2		V
V _{ОН}	High-level output voltage	V _{ID} = 100 mV, See Note 6	3.2	3.8		3.2	4.1		3.2	3.9		V
VOL	Low-level output voltage	$V_{ID} = -100 \text{ mV}, I_{OL} = 0$		0	50		0	50		0	50	mV
AVD	Large-signal differential voltage amplification	V _O = 0.25 V, See Note 6	5	23		50	700		25	170		V/mV
CMRR	Common-mode rejection ratio	V _{IC} = V _{ICR} min	65	80		65	94		65	91		dB
k SVR	Supply-voltage rejection ratio $(\Delta V_{DD}/\Delta V_{IO})$	$V_{DD} = 5 V \text{ to } 10 V,$ $V_{O} = 1.4 V$	65	95		70	97		70	93		dB
I _{DD}	Supply current	$V_O = V_{DD}/2$, $V_{IC} = V_{DD}/2$, No load		1.4	3.2		0.02	0.034		0.21	0.56	mA

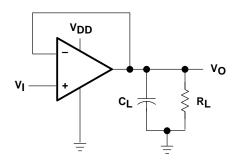
operating characteristics, V_{DD} = 5 V, T_A = $25^{\circ}C$

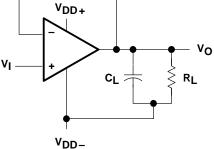
	PARAMETER	TEST CO	NDITIONS	Т	LC252	(TI	_C25L2	Y	TL	C25M2	Y	UNIT
	FARAMETER	TEST CO	NDITION3	MIN	TYP	MAX	MIN	TYP	MAX	MIN TYP MAX		MAX	UNIT
	Slew rate at	C _L = 20 pF,	V _{I(PP)} = 1 V		3.6			0.03			0.43		V/us
	unity gain	See Note 6	V _{I(PP}) = 2.5 V		2.9			0.03			0.40		ν/μ5
Vn	Equivalent input noise voltage	f = 1 kHz,	R _S = 20 Ω		2.5			68			32		nV√/ Hz
вом	Maximum output- swing bandwidth	$V_{O} = V_{OH},$ R _L = 10 k Ω	C _L = 20 pF,		320			5			55		kHz
В ₁	Unity-gain bandwidth	V _I = 10 mV,	C _L = 20 pF		1.7			0.085			0.525		MHz
φm	Phase margin	f = B ₁ , C _L = 20 pF	V _I = 10 mV,		46°			34°			40°		

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

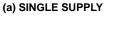
5. This range also applies to each input individually.

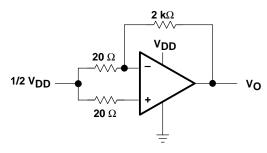
6. For low-bias mode, $R_L = 1 M\Omega$; for medium-bias mode, $R_L = 100 k\Omega$, and for high-bias mode, $R_L = 10 k\Omega$.

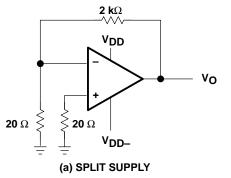



SLOS002I – JUNE 1983 – REVISED MARCH 2001

PARAMETER MEASUREMENT INFORMATION


single-supply versus split-supply test circuits


Because the TLC252, TLC25L2, and TLC25M2 are optimized for single-supply operation, circuit configurations used for the various tests often present some inconvenience since the input signal, in many cases, must be offset from ground. This inconvenience can be avoided by testing the device with split supplies and the output load tied to the negative rail. A comparison of single-supply versus split-supply test circuits is shown below. The use of either circuit gives the same result.



(b) SPLIT SUPPLY

(a) SINGLE SUPPLY

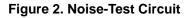
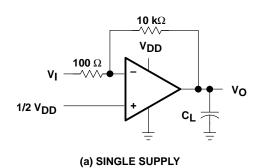
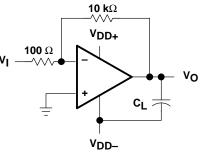
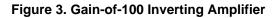
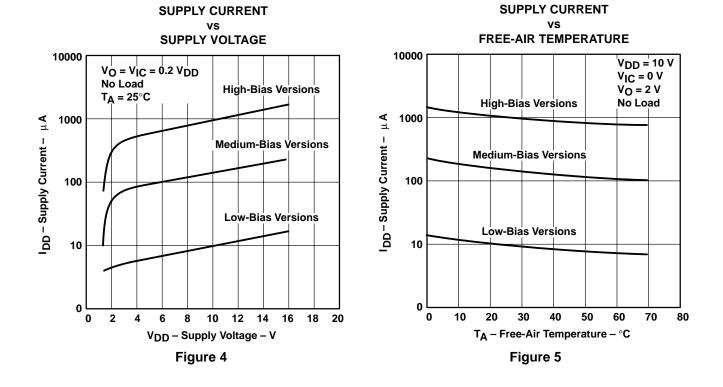





Figure 1. Unity-Gain Amplifier

(a) SPLIT SUPPLY



SLOS002I - JUNE 1983 - REVISED MARCH 2001

TYPICAL CHARACTERISTICS

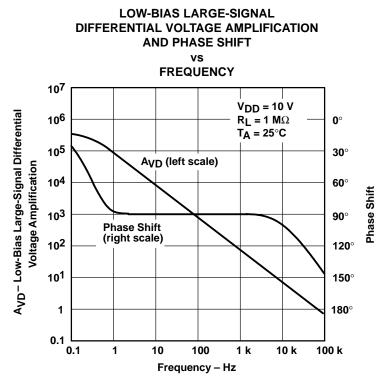

Table of Graphs

				FIGURE
IDD	Supply current	_	vs Supply voltage vs Free-air temperature	4 5
		Low bias	vs Frequency	6
AVD	Large-signal differential voltage amplification	Medium bias	vs Frequency	7
		High bias	vs Frequency	8
		Low bias	vs Frequency	6
	Phase shift	Medium bias	vs Frequency	7
		High bias	vs Frequency	8

TYPICAL CHARACTERISTICS

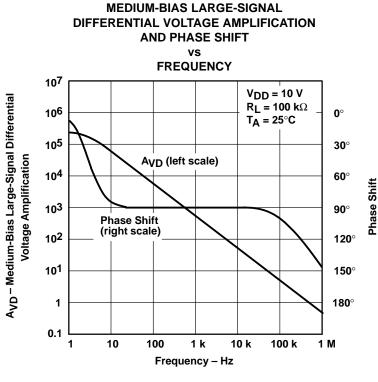


Figure 7

TYPICAL CHARACTERISTICS

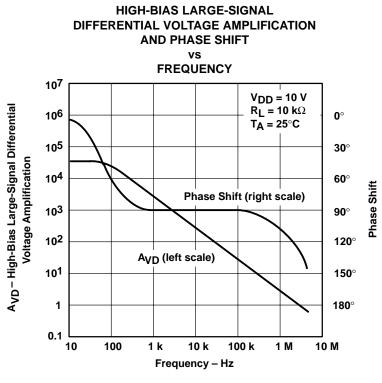


Figure 8

SLOS002I - JUNE 1983 - REVISED MARCH 2001

APPLICATION INFORMATION

latch-up avoidance

Junction-isolated CMOS circuits have an inherent parasitic PNPN structure that can function as an SCR. Under certain conditions, this SCR may be triggered into a low-impedance state, resulting in excessive supply current. To avoid such conditions, no voltage greater than 0.3 V beyond the supply rails should be applied to any pin. In general, the operational amplifier supplies should be applied simultaneously with, or before, application of any input signals.

output stage considerations

The amplifier's output stage consists of a source-follower-connected pullup transistor and an open-drain pulldown transistor. The high-level output voltage (VOH) is virtually independent of the IDD selection and increases with higher values of V_{DD} and reduced output loading. The low-level output voltage (V_{OL}) decreases with reduced output current and higher input common-mode voltage. With no load, VOL is essentially equal to the potential of V_{DD} /GND.

supply configurations

Even though the TLC252/25_2C series is characterized for single-supply operation, it can be used effectively in a split-supply configuration if the input common-mode voltage (V_{ICR}), output swing (V_{OI} and V_{OH}), and supply voltage limits are not exceeded.

circuit layout precautions

The user is cautioned that whenever extremely high circuit impedances are used, care must be exercised in layout, construction, board cleanliness, and supply filtering to avoid hum and noise pickup, as well as excessive dc leakages.

24-Sep-2015

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TLC252ACD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		252AC	Samples
TLC252ACP	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI			
TLC252BCP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type		TLC252BCP	Samples
TLC252CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		252C	Samples
TLC252CDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		252C	Samples
TLC252CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		252C	Samples
TLC252CDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		252C	Samples
TLC252CP	ACTIVE	PDIP	Ρ	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type		TLC252CP	Samples
TLC252CPE4	ACTIVE	PDIP	Ρ	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type		TLC252CP	Samples
TLC252CPWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		P252	Samples
TLC25L2ACD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	25L2AC	Samples
TLC25L2BCD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	25L2BC	Samples
TLC25L2BCDR	PREVIEW	SOIC	D	8		TBD	Call TI	Call TI			
TLC25L2BCP	ACTIVE	PDIP	Ρ	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TLC25L2BC	Samples
TLC25L2CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	25L2C	Samples
TLC25L2CDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	25L2C	Samples
TLC25L2CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		25L2C	Samples
TLC25L2CP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type		TLC25L2CP	Samples

PACKAGE OPTION ADDENDUM

24-Sep-2015

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TLC25L2CPSR	OBSOLETE	SO	PS	8		TBD	Call TI	Call TI			
TLC25L2CPSRG4	OBSOLETE	SO	PS	8		TBD	Call TI	Call TI			
TLC25M2ACD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		25M2AC	Samples
TLC25M2ACP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type		TLC25M2AC	Samples
TLC25M2BCD	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI			
TLC25M2BCP	OBSOLETE	PDIP	Р	8		TBD	Call TI	Call TI			
TLC25M2CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	25M2C	Samples
TLC25M2CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	25M2C	Samples
TLC25M2CP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TLC25M2CP	Samples
TLC25M2CPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TLC25M2CP	Samples
TLC25M2CPWLE	OBSOLETE	TSSOP	PW	8		TBD	Call TI	Call TI	0 to 70		

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

www.ti.com

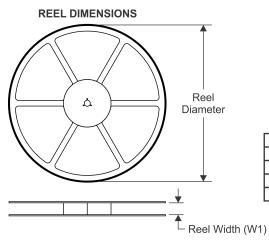
24-Sep-2015

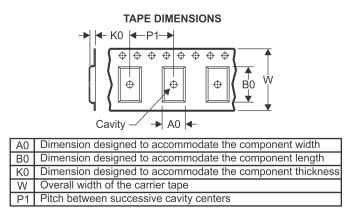
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

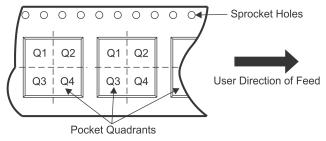
⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

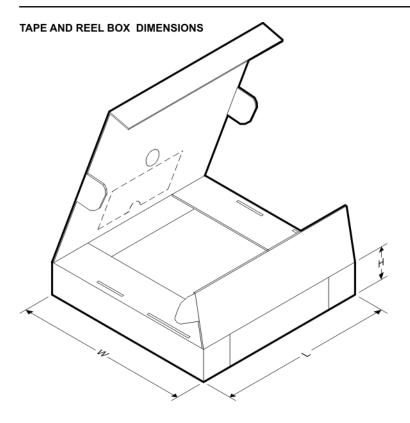

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TLC252CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC252CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC252CPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
TLC25L2CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC25M2CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

29-Apr-2016

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLC252CDR	SOIC	D	8	2500	340.5	338.1	20.6
TLC252CDR	SOIC	D	8	2500	367.0	367.0	38.0
TLC252CPWR	TSSOP	PW	8	2000	367.0	367.0	35.0
TLC25L2CDR	SOIC	D	8	2500	340.5	338.1	20.6
TLC25M2CDR	SOIC	D	8	2500	340.5	338.1	20.6

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications				
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive			
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications			
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers			
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps			
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy			
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial			
Interface	interface.ti.com	Medical	www.ti.com/medical			
Logic	logic.ti.com	Security	www.ti.com/security			
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense			
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video			
RFID	www.ti-rfid.com					
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com			
Wireless Connectivity	www.ti.com/wirelessconnectivity					

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated