

SN65LVDM176 SLLS320D-DECEMBER 1998-REVISED JULY 2000

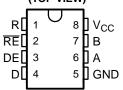
HIGH-SPEED DIFFERENTIAL LINE TRANSCEIVER

FEATURES

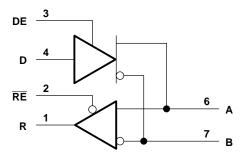
- Low-Voltage Differential Driver and Receiver for Half-Duplex Operation
- Designed for Signaling Rates of 400 Mbit/s
- ESD Protection Exceeds 15 kV on Bus Pins
- Operates From a Single 3.3-V Supply
- Low-Voltage Differential Signaling With Typical Output Voltages of 350 mV and a 50-Ω Load
- Valid Output With as Little as 50 mV Input Voltage Difference
- Propagation Delay Times
 - Driver: 1.7 ns Typ
 - Receiver: 3.7 ns Typ
- Power Dissipation at 200 MHz
 - Driver: 50 mW Typical
 - Receiver: 60 mW Typical
- LVTTL Levels Are 5-V Tolerant
- Bus Pins Are High Impedance When Disabled or With V_{CC} Less Than 1.5 V
- Open-Circuit Fail-Safe Receiver
 - Surface-Mount Packaging
 - D Package (SOIC)
 - DGK Package (MSOP)

DESCRIPTION

The SN65LVDM176 is a differential line driver and receiver configured as a transceiver that uses low-voltage differential signaling (LVDS) to achieve signaling rates as high as 400 Mbit/s. These circuits are similar to TIA/EIA-644 standard compliant devices (SN65LVDS) counterparts except that the output current of the drivers is doubled. This modification provides a minimum differential output voltage magnitude of 247 mV into a 50- Ω load and allows double-terminated lines and half-duplex operation. The receivers detect a voltage difference of less than 50 mV with up to 1 V of ground potential difference between a transmitter and receiver.


The intended application of this device and signaling technique is for half-duplex or multiplex baseband data transmission over controlled impedance media of approximately $100-\Omega$ characteristic impedance. The transmission media may be printed-circuit board traces, backplanes, or cables. (Note: The ultimate rate and distance of data transfer is dependent upon the attenuation characteristics of the media, the noise coupling to the environment, and other application specific characteristics).

The SN65LVDM176 is characterized for operation from -40°C to 85°C.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SN65LVDM176D (Marked as DM176 or LVM176) SN65LVDM176DGK (Marked as M76) (TOP VIEW)

logic diagram (positive logic)

SN65LVDM176

SLLS320D-DECEMBER 1998-REVISED JULY 2000

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

AVAILABLE OPTIONS

	PACK	AGE
T _A	SMALL OUTLINE (D) ⁽¹⁾	MSOP (DGK) ⁽¹⁾
–40°C to 85°C	SN65LVDM176D	SN65LVDM176DGK

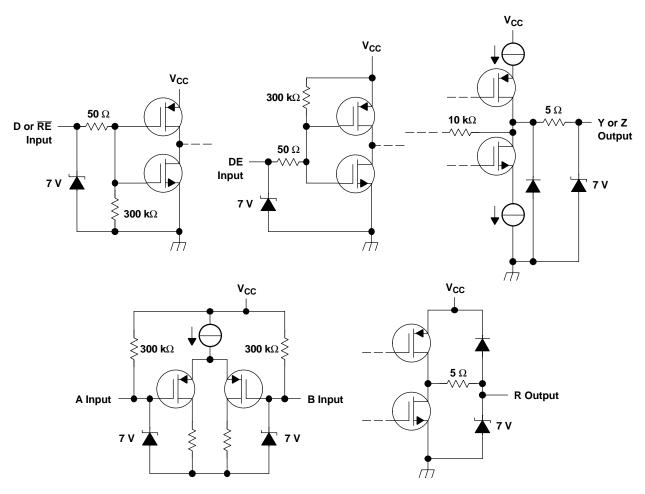
 The D package is available taped and reeled. Add the suffix R to the device type(e.g., SN65LVDM176DR).

FUNCTION TABLES

DRIVER⁽¹⁾

INPUT	ENABLE	OUTI	PUTS
D	DE	Α	В
L	Н	L	Н
Н	Н	Н	L
Open	Н	L	Н
Х	L	Z	Z

(1) H = high level, L = low level, X = irrelevant, Z = high impedance


RECEIVER⁽¹⁾

DIFFERENTIAL INPUTS $V_{ID} = V_A - V_B$	ENABLE RE	OUTPUT R
$V_{ID} \ge 50 \text{ mV}$	L	Н
50 mV < V _{ID} < 50 mV	L	?
$V_{ID} \le -50 \text{ mV}$	L	L
Open	L	Н
X	Н	Z

(1) H = high level, L = low level, X = irrelevant, Z = high impedance

2

EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS

ABSOLUTE MAXIMUM RATINGS

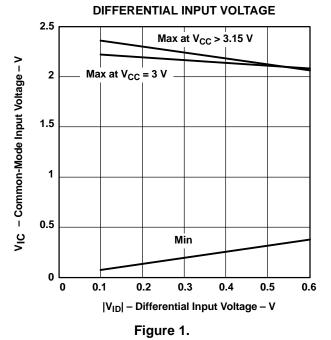
over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			UNIT
V _{CC}	Supply voltage ⁽²⁾		–0.5 V to 4 V
		D, R, DE, RE	–0.5 V to 6 V
	Input voltage range	A or B	–0.5 V to 4 V
	Flastrastatia disabarga	A, B , and GND ⁽³⁾	CLass 3, A:15 kV, B:600 V
	Electrostatic discharge	All terminals	Class 3, A:7 kV, B:500 V
	Continuous total power dissipation		See Dissipation Rating Table
T _A	Operating free-air temperature range		-40°C to 85°C
T _{stg}	Storage temperature range		–65°C to 150°C
	Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds		260°C

(1) Stresses beyond those listed under *absolute maximum ratings* may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under *recommended operating conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values, except differential I/O bus voltage, are with respect to network ground terminal.

(3) Tested in accordance with MIL-STD-883C Method 3015.7.


DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 85°C POWER RATING
D	725 mW	5.8 mW/°C	377 mW
DGK	424 mW	3.4 mW/°C	220 mW

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage	3	3.3	3.6	V
VIH	High-level input voltage	2			V
VIL	Low-level input voltage			0.8	V
V _{ID}	Magnitude of differential input voltage	0.1		0.6	V
V _{IC}	Common-mode input voltage (see Figure 1)	$\frac{ V_{ D }}{2}$		$4 - \frac{ V_{ID} }{2}$ $V_{CC} - 0.8$	V
T _A	Operating free-air temperature	-40		85	°C

COMMON-MODE INPUT VOLTAGE

VS

DEVICE ELECTRICAL CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
	Driver and receiver enabled, no receiver load, driver $\rm R_{L}$ = 50 Ω		10	15		
	Supply ourropt	Driver enabled, receiver disabled, $R_L = 50 \ \Omega$		9	15	
'CC	I _{CC} Supply current	Driver disabled, receiver enabled, no load		1.8	5	mA
		Disabled		0.5	2	

(1) All typical values are at 25°C and with a 3.3-V supply.

DRIVER ELECTRICAL CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{OD}	Differential output voltage magnitude			247	340	454	
$\Delta V_{OD} $	Change in differential output voltage magnitude between states	logic	$R_L = 50 \Omega$, See Figure 2 and Figure 3	-50		50	mV
V _{OC(SS)}	Change in steady state common made sutput voltage between S			1.125		1.37 5	V
$\Delta V_{OC(SS)}$			See Figure 4	-50		50	mV
V _{OC(PP)}	Peak-to-peak common-mode output voltage				50	150	mV
	High-level input current ⁽¹⁾	DE	V _{IH} = 5 V		0.5	10	
IIH		D	v _{IH} = 5 v		2	20	0 μA
	Low-level input current ⁽¹⁾	DE	V 0.0.V		-0.5	-10	۵
IIL		D	$V_{IL} = 0.8 V$		2	10	μA
	Chart aira it autaut aurrant (1)		V_{OA} or $V_{OB} = 0 V$			-10	~ ^
I _{OS} Short-circuit output current ⁽¹⁾		$V_{OD} = 0 V$			-10	mA	
CI	Input capacitance				3		pF

(1) The non-algebraic convention, where the more positive (least negative) limit is designated maximum, is used in this data sheet for this parameter.

RECEIVER ELECTRICAL CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP(1) MAX	UNIT
V _{IT+}	Positive-going differential input voltage threshold			50	m)/
V _{IT-}	Negative-going differential input voltage threshold	See Figure 6	-50		mV
V _{OH}	High-level output voltage	I _{OH} = -8 mA	2.4		V
V _{OL}	Low-level output voltage	I _{OL} = 8 mA		0.4	V
	$(A = B = b)^{(2)}$	V ₁ = 0 V	-2	-20	
1	Input current (A or B inputs) ⁽²⁾	V ₁ = 2.4 V	-1.2		μA
I _{I(OFF)}	Power-off input current (A or B inputs)	V _{CC} = 0 V or 1.8 V		20	μA
I _{IH}	High-level input current (enables)	V _{IH} = 5 V		10	μA
I	Low-level input current (enables)	V _{IL} = 0.8 V		10	μA
I _{OZ}	High-impedance output current ⁽²⁾	V _O = 0 V or 5 V		±1	μA

(1) All typical values are at 25°C and with a 3.3-V supply.

(2) The non-algebraic convention, where the more positive (least negative) limit is designated maximum, is used in this data sheet for this parameter.

SLLS320D-DECEMBER 1998-REVISED JULY 2000

DRIVER SWITCHING CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

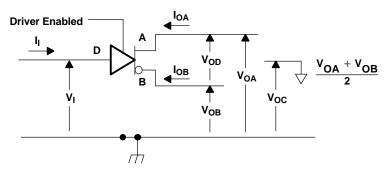
	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output		0.5	1.7	2.7	5
t _{PHL}	Propagation delay time, high-to-low-level output		0.5	1.7	2.7	ns
t _{sk(p)}	Pulse skew (t _{pHL} - t _{pLH})	$R_L = 50 \Omega, C_L = 10 pF,$ See Figure 3		0.2		ns
t _r	Differential output signal rise time			0.6	1	5
t _f	Differential output signal fall time			0.6	1	ns
t _{sk(pp)} ⁽²⁾	Part-to-part skew				1	ns
t _{PZH}	Propagation delay time, high-impedance-to-high-level output			8	12	
t _{PZL}	Propagation delay time, high-impedance-to-low-level output	Cas Firmer 5		7	10	
t _{PHZ}	Propagation delay time, high-level-to-high-impedance output	See Figure 5		3	10	ns
t _{PLZ}	Propagation delay time, low-level-to-high-impedance output			4	10	

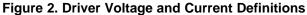
(1) All typical values are at 25°C and with a 3.3 V supply.

(2) t_{sk(pp)} is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.

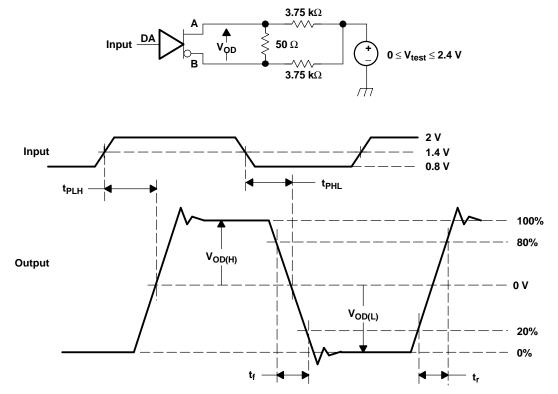
RECEIVER SWITCHING CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

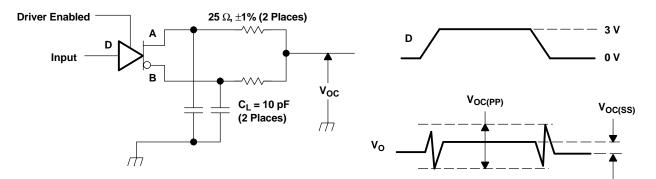

	PARAMETER	TEST CONDITIONS	MIN	TYP(1)	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output		2.3	3.7	4.5	
t _{PHL}	Propagation delay time, high-to-low-level output		2.3	3.7	4.5	ns
t _{sk(p)}	Pulse skew (t _{pHL} - t _{pLH})	$C_L = 10 \text{ pF}$, See Figure 7		0.4		
t _r	Output signal rise time			0.8	1.5	20
t _f	Output signal fall time			0.8	1.5	ns
t _{sk(pp)} ⁽²⁾	Part-to-part skew				1	ns
t _{PZH}	Propagation delay time, high-level-to-high-impedance output			3	10	
t _{PZL}	Propagation delay time, low-level-to-low-impedance output	See Figure 9		3	10	
t _{PHZ}	Propagation delay time, high-impedance-to-high-level output	See Figure 8		4	10	ns
t _{PLZ}	Propagation delay time, low-impedance-to-high-level output			6	10	


(1) All typical values are at 25°C and with a 3.3-V supply.

(2) t_{sk(pp)} is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.

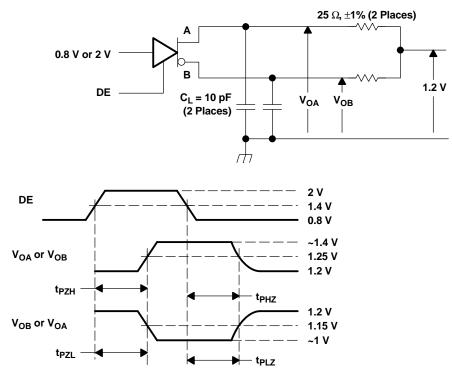

PARAMETER MEASUREMENT INFORMATION

DRIVER



PARAMETER MEASUREMENT INFORMATION (continued)

A. All input pulses are supplied by a generator having the following characteristics: t_r or $t_f \le 1$ ns, pulse repetition rate (PRR) = 50 Mpps, pulse width = 10 ± 0.2 ns . C_L includes instrumentation and fixture capacitance within 0,06 mm of the D.U.T.


Figure 3. Test Circuit, Timing, and Voltage Definitions for the Differential Output Signal

A. All input pulses are supplied by a generator having the following characteristics: t_r or $t_f \le 1$ ns, pulse repetition rate (PRR) = 0.5 Mpps, pulse width = 500 ± 10 ns . C_L includes instrumentation and fixture capacitance within 0,06 mm of the D.U.T. The measurement of $V_{OC(PP)}$ is made on test equipment with a -3 dB bandwidth of at least 300 MHz.

Figure 4. Test Circuit and Definitions for the Driver Common-Mode Output Voltage

PARAMETER MEASUREMENT INFORMATION (continued)

A. All input pulses are supplied by a generator having the following characteristics: t_r or $t_f \le 1$ ns, pulse repetition rate (PRR) = 0.5 Mpps, pulse width = 500 ± 10 ns . C_L includes instrumentation and fixture capacitance within 0,06 mm of the D.U.T.

RECEIVER

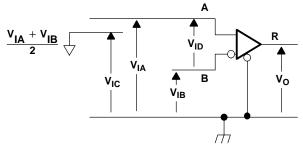
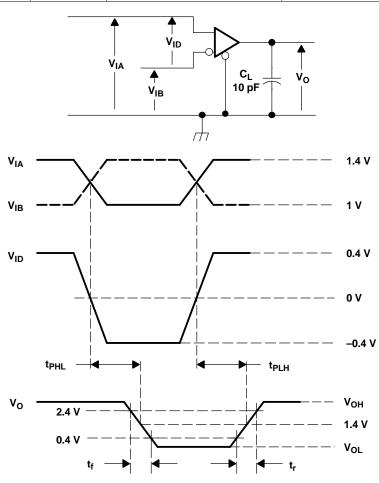
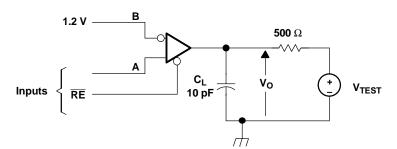



Figure 6. Receiver Voltage Definitions

SLLS320D-DECEMBER 1998-REVISED JULY 2000

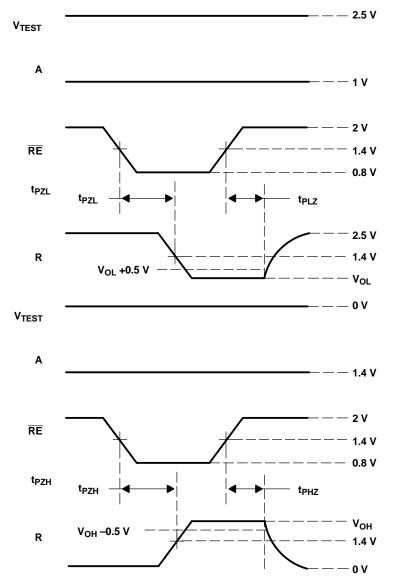
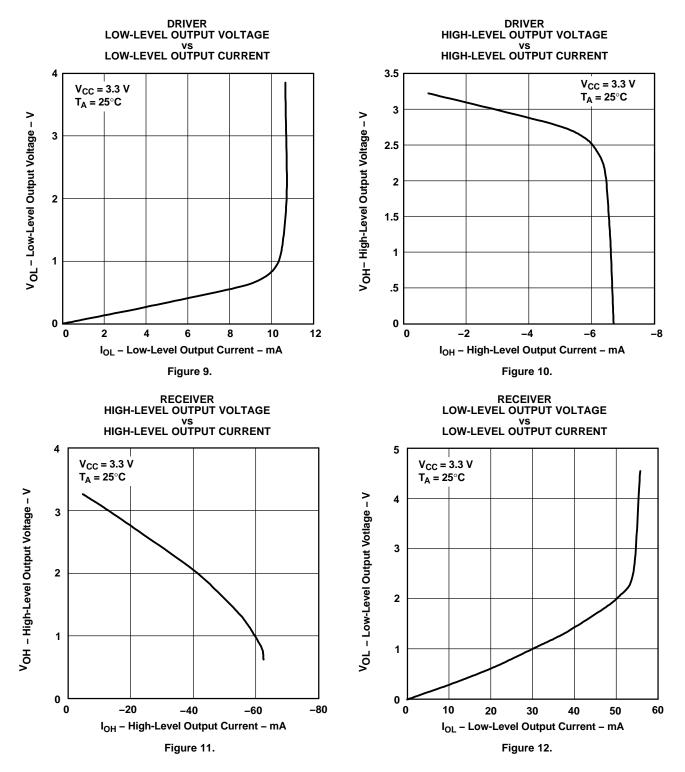

Table 1. Receiver Minimum and Maximum Input Threshold Test Voltages

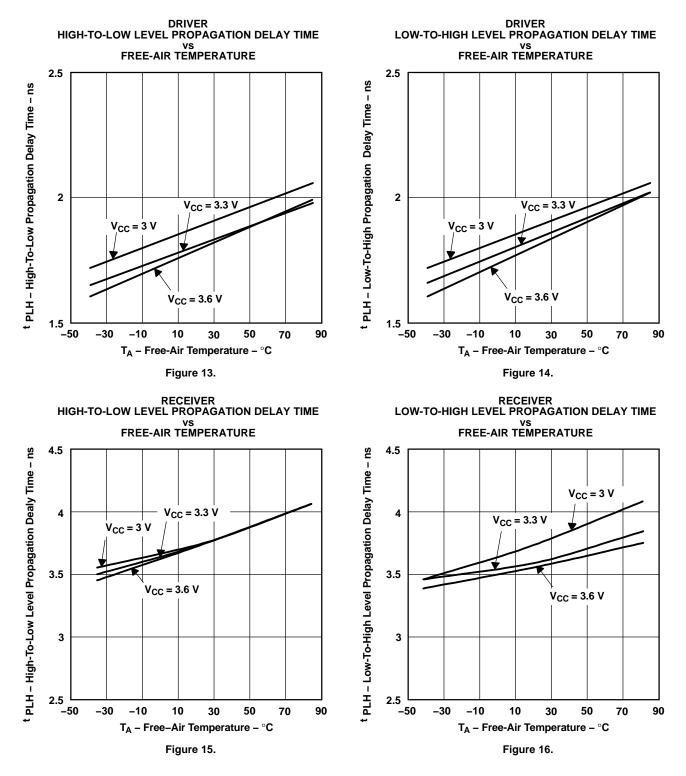
	VOLTAGES (V)	RESULTING DIFFERENTIAL INPUT VOLTAGE (mV)	RESULTING COMMON- MODE INPUT VOLTAGE (V)
VIA	V _{IB}	V _{ID}	V _{IC}
1.225	1.175	50	1.2
1.175	1.225	-50	1.2
2.41	2.36	50	2.385
2.36	2.41	-50	2.385
0.05	0	50	0.025
0	0.05	-50	0.025
1.5	0.9	600	1.2
0.9	1.5	-600	1.2
2.4	1.8	600	2.1
1.8	2.4	-600	2.1
0.6	0	600	0.3
0	0.6	-600	0.3

A. All input pulses are supplied by a generator having the following characteristics: t_r or $t_f \le 1$ ns, pulse repetition rate (PRR) = 50 Mpps, pulse width = 10 ± 0.2 ns. C_L includes instrumentation and fixture capacitance within 0,06 mm of the D.U.T.

Figure 7. Timing Test Circuit and Waveforms

A. All input pulses are supplied by a generator having the following characteristics: t_r or t_f ≤ 1 ns, pulse repetition rate (PRR) = 0.5 Mpps, pulse width = 5000 ± 10 ns. C_L includes instrumentation and fixture capacitance within 0,06 mm of the D.U.T.


Figure 8. Enable/Disable Time Test Circuit and Waveforms

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS (continued)

APPLICATION INFORMATION

The devices are generally used as building blocks for high-speed point-to-point data transmission. Ground differences are less than 1 V with a low common-mode output and balanced interface for very low noise emissions. Devices can interoperate with RS-422, PECL, and IEEE-P1596. Drivers/receivers maintain ECL speeds without the power and dual supply requirements.

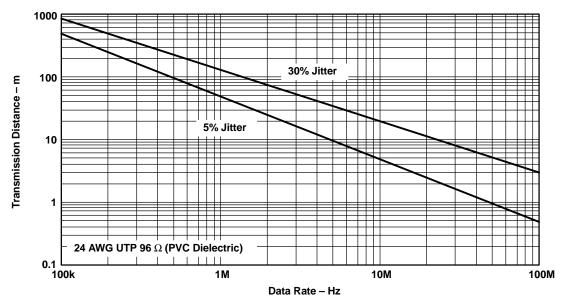
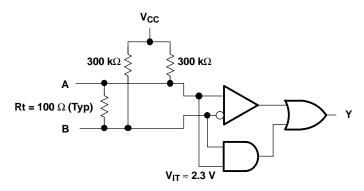
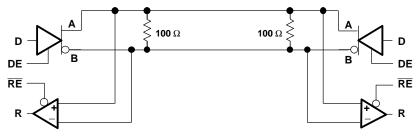


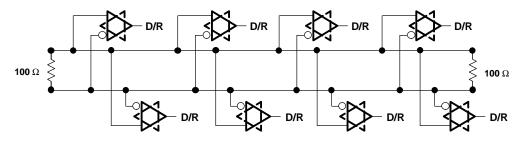
Figure 17. Data Transmission Distance Versus Rate

FAIL SAFE

One of the most common problems with differential signaling applications is how the system responds when no differential voltage is present on the signal pair. The LVDS receiver is like most differential line receivers, in that its output logic state can be indeterminate when the differential input voltage is between –50 mV and 50 mV and within its recommended input common-mode voltage range. TI's LVDS receiver is different in how it handles the open-input circuit situation, however.

Open-circuit means that there is little or no input current to the receiver from the data line itself. This could be when the driver is in a high-impedance state or the cable is disconnected. When this occurs, the LVDS receiver will pull each line of the signal pair to near V_{CC} through 300-k Ω resistors as shown in Figure 18. The fail-safe feature uses an AND gate with input voltage thresholds at about 2.3 V to detect this condition and force the output to a high-level regardless of the differential input voltage.


Figure 18. Open-Circuit Fail Safe of the LVDS Receiver

APPLICATION INFORMATION (continued)

It is only under these conditions that the output of the receiver will be valid with less than a 50-mV differential input voltage magnitude. The presence of the termination resistor, Rt, does not affect the fail-safe function as long as it is connected as shown in the figure. Other termination circuits may allow a dc current to ground that could defeat the pullup currents from the receiver and the fail-safe feature.

Bidirectional Half-Duplex Applications

Multipoint Bus Applications

Note A: Keep drivers and receivers as close to the LVDS bus side connector as possible.

Figure 19. Bidirectional Half-Duplex and Multipoint Bus Applications

18-Oct-2013

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SN65LVDM176D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	DM176	Samples
SN65LVDM176DG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	DM176	Samples
SN65LVDM176DGK	ACTIVE	VSSOP	DGK	8	80	Green (RoHS & no Sb/Br)	CU NIPDAU CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	M76	Samples
SN65LVDM176DGKG4	ACTIVE	VSSOP	DGK	8	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	M76	Samples
SN65LVDM176DGKR	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	M76	Samples
SN65LVDM176DGKRG4	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	M76	Samples
SN65LVDM176DR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	DM176	Samples
SN65LVDM176DRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	DM176	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

www.ti.com

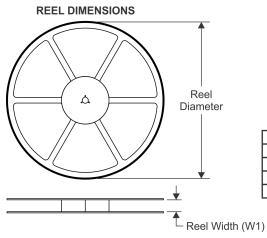
18-Oct-2013

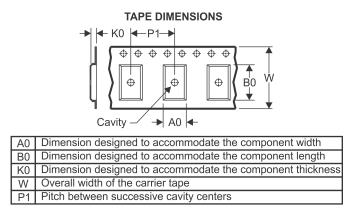
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

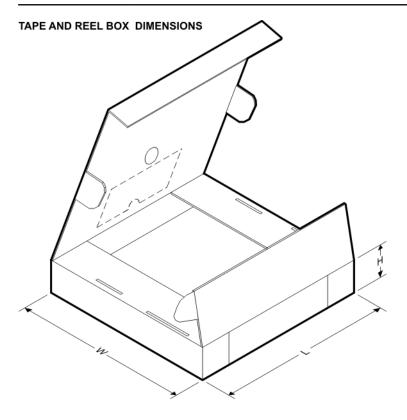

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

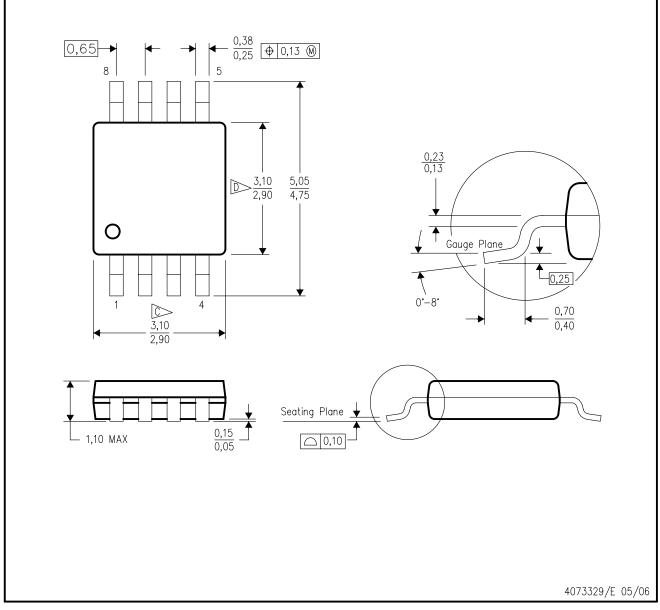

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN65LVDM176DGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
SN65LVDM176DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

26-Jan-2013



*All dimensions are nominal

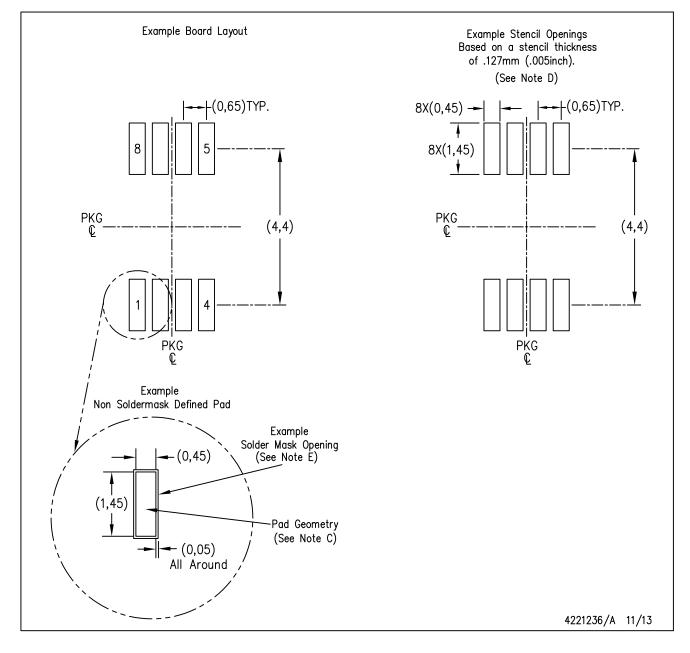
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN65LVDM176DGKR	VSSOP	DGK	8	2500	358.0	335.0	35.0
SN65LVDM176DR	SOIC	D	8	2500	340.5	338.1	20.6

DGK (S-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

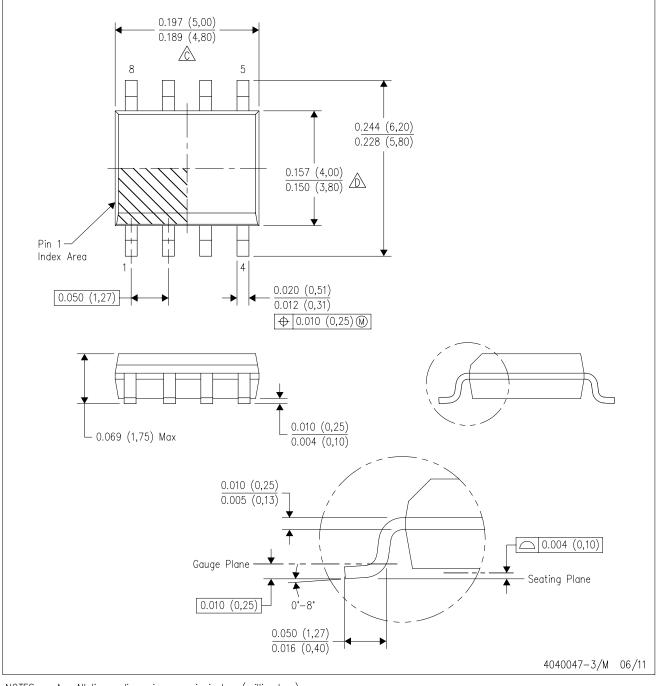
B. This drawing is subject to change without notice.


Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.

- D Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- E. Falls within JEDEC MO-187 variation AA, except interlead flash.

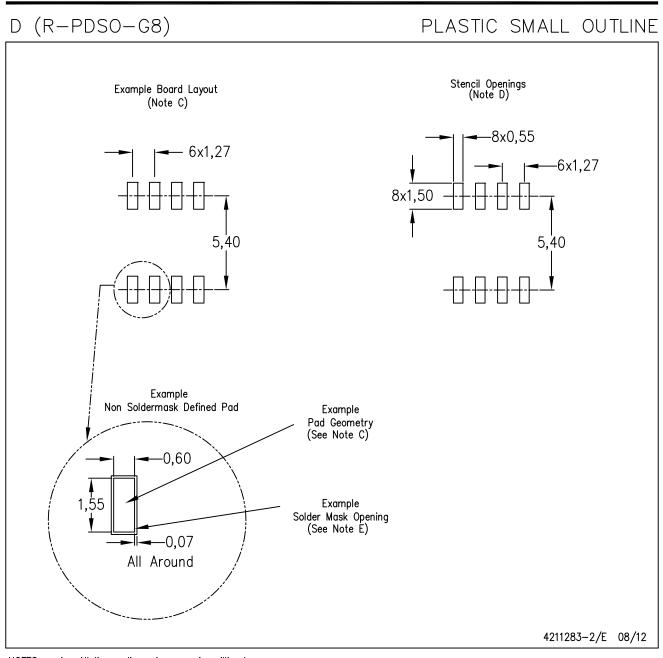
DGK (S-PDSO-G8)

PLASTIC SMALL OUTLINE PACKAGE


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

D (R-PDSO-G8)


PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ctivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated