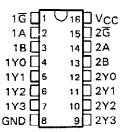
- Designed Specifically for High-Speed: Memory Decoders
   Data Transmission Systems
- Two Fully Independent 2- to 4-Line Decoders/Demultiplexers
- Schottky Clamped for High Performance

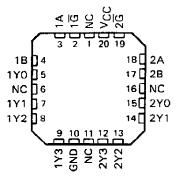
#### description

These Schottky-clamped TTL MSI circuits are designed to be used in high-performance memory-decoding or data-routing applications requiring very short propagation delay times. In high-performance memory systems, these decoders can be used to minimize the effects of system decoding. When employed with high-speed memories utilizing a fast-enable circuit, the delay times of these decoders and the enable time of the memory are usually less than the typical access time of the memory. This means that the effective system delay introduced by the Schottky-clamped system decoder is negligible.

The circuit comprises two individual two-line to four-line decoders in a single package. The active-low enable input can be used as a data line in demultiplexing applications.

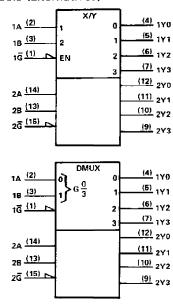

All of these decoders/demultiplexers feature fully buffered inputs, each of which represents only one normalized load to its driving circuit. All inputs are clamped with high-performance Schottky diodes to suppress line-ringing and to simplify system design. The SN54LS139A and SN54S139 are characterized for operation range of  $-55\,^{\circ}\text{C}$  to  $125\,^{\circ}\text{C}$ . The SN74LS139A and SN74S139A are characterized for operation from  $0\,^{\circ}\text{C}$  to  $70\,^{\circ}\text{C}$ .

# FUNCTION TABLE


| INP    | QUTPUTS |     |    |     |      |    |  |
|--------|---------|-----|----|-----|------|----|--|
| ENABLE | SEL     | ECT |    | GUI | PUIS |    |  |
| G      | В       | Α   | YO | Y1  | Y2   | Υ3 |  |
| Н      | Х       | Х   | Н  | Н   | Н    | Н  |  |
| Ļ      | L       | L   | L  | Н   | Н    | Н  |  |
| L      | L       | Н   | Н  | L   | Н    | Н  |  |
| L      | н       | L   | Н  | н   | L    | Н  |  |
| L      | H       | Н   | Н  | H   | Н    | L  |  |

H = high level, L = low level, X = irrelevant

# SN54LS139A, SN54S139 . . . J OR W PACKAGE SN74LS139A, SN74S139A . . . D OR N PACKAGE (TOP VIEW)



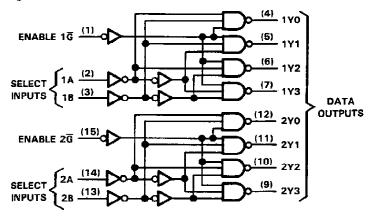

# \$N54L\$139A, \$N54\$139 . . . FK PACKAGE (TOP VIEW)



NC-No internal connection

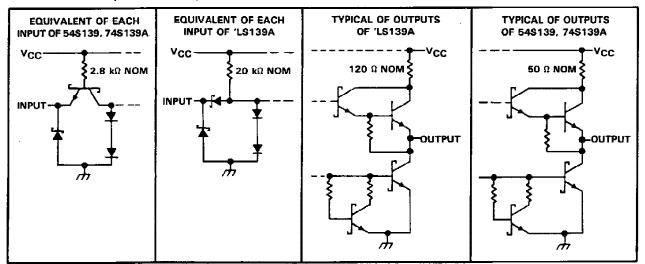
# logic symbols (alternatives)†




<sup>&</sup>lt;sup>†</sup>These symbols are in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.

Pin numbers shown are for D, J, N, and W packages.




# SN54LS139A, SN54S139, SN74LS139A, SN74S139A DUAL 2-LINE TO 4-LINE DECODERS/DEMULTIPLEXERS

# logic diagram (positive logic)



Pin numbers shown are for D, J, N, and W packages.

# schematics of inputs and outputs



# absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

| Supply voltage, VCC (See Note 1)                                        |
|-------------------------------------------------------------------------|
| Input voltage: 'LS139A                                                  |
| 54\$139, 74\$139A, 5.5 V                                                |
| Operating free-air temperature range: SN54LS139A, SN54S13955°C to 125°C |
| SN74LS139A, SN74S139A 0° C to 70°C                                      |
| Storage temperature range                                               |

NOTE 1: Voltage values are with respect to network ground terminal.

# recommended operating conditions

|          |                                | SN54LS139A |     |      | SN   |     |      |      |
|----------|--------------------------------|------------|-----|------|------|-----|------|------|
|          |                                | MIN        | NOM | MAX  | MIN  | NOM | MAX  | UNIT |
| Vcc      | Supply voltage                 | 4.5        | 5   | 5.5  | 4.75 | 5   | 5.25 | V    |
| $V_{IH}$ | High-level input voltage       | 2          |     |      | 2    |     |      | V    |
| VIL      | Low-level input voltage        |            |     | 0.7  |      |     | 0.8  | V    |
| ЮН       | High-level output current      |            |     | -0.4 | i –  | -   | -0.4 | mA   |
| loL      | Low-level output current       |            |     | 4    | 1    |     | 8    | mA   |
| TA       | Operating free-air temperature | - 55       |     | 125  | 0    |     | 70   | ů    |

# electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| PARAMETER        | TEST CONDITIONS†                                    |                         |                        | SI   | 154LS13                                         | 9A    | SN74LS139A |      |      |      |
|------------------|-----------------------------------------------------|-------------------------|------------------------|------|-------------------------------------------------|-------|------------|------|------|------|
| TANAMETER        |                                                     | TEST CONDITIO           |                        | MIN  | TYP‡                                            | MAX   | MIN        | TYP# | MAX  | UNIT |
| Vik              | V <sub>CC</sub> = MIN,                              | l <sub> </sub> = -18 mA |                        |      |                                                 | -1.5  |            |      | -1.5 | V    |
| Voн              | V <sub>CC</sub> = MIN,<br>I <sub>OH</sub> = -0.4 mA | V <sub>IH</sub> = 2 V,  | VIL = MAX,             | 2.5  | 3.4                                             |       | 2.7        | 3.4  |      | ٧    |
| Vo               | V <sub>CC</sub> = MIN,                              | V <sub>IH</sub> = 2 V,  | I <sub>OL</sub> = 4 mA |      | 0.25                                            | 0.4   |            | 0.25 | 0.4  |      |
| VOL              | VIL = MAX                                           |                         | IOL = 8 mA             |      | <del> · · · · · · · · · · · · · · · · · ·</del> |       |            | 0.35 | 0.5  | ٧    |
| lj .             | V <sub>CC</sub> = MAX,                              | V <sub>1</sub> = 7 V    |                        |      | =                                               | 0.1   |            |      | 0.1  | mA   |
| liн<br>П         | VCC = MAX,                                          | V <sub>1</sub> = 2.7 V  |                        |      |                                                 | 20    |            |      | 20   | μА   |
| I <sub>IL</sub>  | $V_{CC} = MAX,$                                     | V <sub>1</sub> = 0.4 V  |                        |      |                                                 | -0.4  |            |      | -0.4 | mA   |
| los <sup>§</sup> | V <sub>CC</sub> = MAX                               |                         |                        | - 20 | -                                               | - 100 | - 20       |      | 100  | mA   |
| <sup>1</sup> cc  | V <sub>CC</sub> = MAX,                              | Outputs enable          | ed and open            |      | 6.8                                             | 11    |            | 6.8  | 11   | mA   |

<sup>†</sup> For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

# switching characteristics, $V_{CC} = 5 \text{ V}$ , $T_A = 25 \,^{\circ}\text{C}$ (see Note 2)

| PARAMETER¶    | FROM<br>((NPUT) | TO<br>(OUTPUT)                               | LEVELS<br>OF DELAY | TEST CONDITIONS                   |         | 54LS13<br>74LS13 |     | UNIT |    |    |    |
|---------------|-----------------|----------------------------------------------|--------------------|-----------------------------------|---------|------------------|-----|------|----|----|----|
|               |                 | (0001,                                       | OI DELA            |                                   | MIN     | TYP              | MAX |      |    |    |    |
| tPLH          |                 |                                              | 2                  |                                   |         | 13               | 20  | ns   |    |    |    |
| tPHL          | Binary          | Binary                                       | Binary             | Binary                            | ary Anu |                  |     |      | 22 | 33 | ns |
| tPLH          | Select          | Any                                          | 3                  | D 210 6 16 5                      |         | 18               | 29  | ns   |    |    |    |
| tPHL          |                 | <u>.                                    </u> | 3                  | $R_L = 2 k\Omega$ , $C_L = 15 pF$ |         | 25               | 38  | ns   |    |    |    |
| t <b>P</b> LH | Enable          | Emphis Amus                                  |                    | 2                                 |         |                  | 16  | 24   | ns |    |    |
| tPHL          | Lilabic         | Any                                          |                    |                                   |         | 21               | 32  | ns   |    |    |    |

<sup>1</sup> tpLH = propagation delay time, low-to-high-level output

tphL = propagation delay time, high-to-low-level output NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

 $<sup>^{\</sup>ddagger}$ All typical values are at  $V_{CC} = 5 \text{ V}$ ,  $T_{A} = 25 \,^{\circ}\text{C}$ .

Not more than one output should be shorted at a time, and duration of the short circuit test should not exceed one second.

# SN54S139, SN74S139A DUAL 2-LINE TO 4-LINE DECODERS/DEMULTIPLIERS

# recommended operating conditions

|          |                                | S   | SN54S139 |            |      | SN74S139A |      |      |  |
|----------|--------------------------------|-----|----------|------------|------|-----------|------|------|--|
|          |                                | MIN | NOM      | MAX        | MIN  | NOM       | MAX  | UNIT |  |
| Vсс      | Supply voltage                 | 4.5 | 5        | 5.5        | 4.75 | 5         | 5.25 | V    |  |
| VIH      | High-level input voltage       | 2   |          |            | 2    |           |      | V    |  |
| VIL      | Low-level input voltage        |     |          | 0.8        |      |           | 0.8  | V    |  |
| 편        | High-level output current      |     |          | <b>– 1</b> |      | ·         | - 1  | mA   |  |
| <u>o</u> | Low-level output current       |     | -        | 20         |      |           | 20   | mΑ   |  |
| TΑ       | Operating free-air temperature | -55 |          | 125        | 0    |           | 70   | °C   |  |

# electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| PARAMETER        |                         | S                        | UNIT                     |        |     |      |      |    |
|------------------|-------------------------|--------------------------|--------------------------|--------|-----|------|------|----|
|                  |                         |                          |                          |        | MIN | TYP‡ | MAX  |    |
| VIK              | V <sub>CC</sub> = MIN,  | lj = −18 mA              |                          |        |     |      | -1.2 | V  |
|                  | VCC = MIN,              | V <sub>IH</sub> = 2 V,   | V <sub>IL</sub> = 0.8 V, | SN54S' | 2.5 | 3.4  |      | V  |
| ∨он              | IOH = -1 mA             |                          |                          | SN74S' | 2.7 | 3.4  |      | *  |
| Vol              | V <sub>CC</sub> = MIN,  | $V_{IH} = 2 V_r$         | V <sub>IL</sub> = 0.8 V, |        |     |      | 0.5  | V  |
| - OL             | I <sub>OL</sub> = 20 mA |                          |                          |        |     |      | 0.0  |    |
| i,               | V <sub>CC</sub> = MAX,  | $V_{  } = 5.5 \text{ V}$ |                          |        |     |      | 1    | mA |
| l <sub>IH</sub>  | V <sub>CC</sub> = MAX,  | $V_1 = 2.7 \text{ V}$    |                          |        |     |      | 50   | μΑ |
| Iլլ              | V <sub>CC</sub> = MAX,  | $V_{  } = 0.5 V$         |                          |        |     |      | - 2  | mA |
| los <sup>§</sup> | V <sub>CC</sub> = MAX   |                          |                          |        | -40 |      | -100 | mA |
| lcc              | V <sub>CC</sub> = MAX,  | Outputs enable           | d and open               |        |     | 60   | 90   | mΑ |

<sup>†</sup>For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

 $^{\ddagger}$  All typical values are at V<sub>CC</sub> = 5 V, T<sub>A</sub> = 25 °C.

# switching characteristics, $V_{CC} = 5 \text{ V}$ , $T_A = 25 \,^{\circ}\text{C}$ (see Note 2)

| PARAMETERS       | FROM<br>(INPUT) | TO (OUTPUT)       | LEVELS<br>OF DELAY | TEST CONDITIONS                             |        | N54S13 |     | UNIT |  |  |     |    |
|------------------|-----------------|-------------------|--------------------|---------------------------------------------|--------|--------|-----|------|--|--|-----|----|
| 1                | (INPO1)         | (OUTPOT) OF DELAY |                    |                                             | MIN    | TYP    | MAX |      |  |  |     |    |
| tPLH             | Binary          |                   |                    |                                             | 1      | 5      | 7.5 | ns   |  |  |     |    |
| <sup>t</sup> PHL |                 | Binary            | Binary             | Binary                                      | Binary | Binary | A   | 2    |  |  | 6.5 | 10 |
| tPLH             | Select          | Any               | 3                  | $R_L = 280 \Omega$ , $C_L = 15 \mathrm{pF}$ |        | 7      | 12  | ns   |  |  |     |    |
| <sup>†</sup> PHL |                 |                   |                    | n_ = 280 11,                                |        | 8      | 12  | ns   |  |  |     |    |
| tPLH             | Cbla            |                   |                    |                                             | 5      | 8      | ns  |      |  |  |     |    |
| tPHL             | Enable          | Any               | 2                  |                                             |        | 6.5    | 10  | ns   |  |  |     |    |

TtpLH = propagation delay time, low-to-high-level output

tpHL = propagation delay time, high-to-low-level output

NOTE 2: Load circuits and voltage waveforms are shown in Section 1.



<sup>§</sup> Not more than one output should be shorted at a time, and duration of the short circuit test should not exceed one second.

#### IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated

#### **IMPORTANT NOTICE**

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated

PRODUCT FOLDER | PRODUCT INFO: FEATURES | DESCRIPTION | DATASHEETS | PRICING/AVAILABILITY/PKG | APPLICATION NOTES | RELATED DOCUMENTS

PRODUCT SUPPORT: TRAINING

# SN74LS139A, Dual 2-line to 4-line decoders / demultiplexers

DEVICE STATUS: ACTIVE

| PARAMETER NAME    | SN54LS139A | SN74LS139A   |
|-------------------|------------|--------------|
| Voltage Nodes (V) | 5          | 5            |
| Vcc range (V)     | 4.5 to 5.5 | 4.75 to 5.25 |
| Input Level       | TTL        | TTL          |
| Output Level      | TTL        | TTL          |
| Output Drive (mA) |            | -0.4/8       |
| Output            | 2S         | 2S           |
| From              | 2          | 2            |
| То                | 4          | 4            |

FEATURES ABack to Top

• Designed Specifically for High-Speed: Memory Decoders

**Data Transmission Systems** 

- Two Fully Independent 2- to 4-Line Decoders/Demultiplexers
- Schottky Clamped for High Performance

DESCRIPTION ABACK to Top

These Schottky-clamped TTL MSI circuits are designed to be used in high-performance memory-decoding or data-routing applications requiring very short propagation delay times. In high-performance memory systems, these decoders can be used to minimize the effects of system decoding. When employed with high speed memories utilizing a fast-enable circuit, the delay times of these decoders and the enable time of the memory are usually less than the typical access time of the memory. This means that the effective system delay introduced by the Schottky-clamped system decoder is negligible.

The circuit comprises two individual two-line to four-line decoders in a single package. The active-low enable input can be used as a data line in demultiplexing applications.

All of these decoders/demultiplexers feature fully buffered inputs, each of which represents only one normalized load to its driving circuit. All inputs are clamped with high-performance Schottky diodes to suppress line-ringing and to simplify system design. The SN54LS139A and SN54S139 are characterized for operation range of -55°C to 125°C. The SN74LS139A and SN74S139A are characterized for operation from 0°C to 70°C.

# TECHNICAL DOCUMENTS

Back to Top

To view the following documents, Acrobat Reader 4.0 is required.

To download a document to your hard drive, right-click on the link and choose 'Save'.

DATASHEET 

<u>▲Back to Top</u>

Product Folder: SN74LS139A, Dual 2-line to 4-line decoders / demultiplexers

Full datasheet in Zipped PostScript: <a href="mailto:sdls013.psz">sdls013.psz</a> (268 KB)

#### APPLICATION NOTES

Back to Top

View Application Reports for Digital Logic

- Designing With Logic (Rev. C) (SDYA009C Updated: 06/01/1997)
- Designing with the SN54/74LS123 (Rev. A) (SDLA006A Updated: 03/01/1997)
- Evaluation of Nickel/Palladium/Gold-Finished Surface-Mount Integrated Circuits (SZZA026 Updated: 06/20/2001)
- Input and Output Characteristics of Digital Integrated Circuits (SDYA010 Updated: 10/01/1996)
- Live Insertion (SDYA012 Updated: 10/01/1996)

### RELATED DOCUMENTS

▲Back to Top

- Advanced Bus Interface Logic Selection Guide (SCYT126, 448 KB Updated: 01/09/2001)
- Documentation Rules (SAP) And Ordering Information (Rev. B) (SZZU001B, 13 KB Updated: 05/06/1999)
- Logic Selection Guide First Half 2002 (Rev. Q) (SDYU001Q, 3368 KB Updated: 12/17/2001)
- MicroStar Junior BGA Design Summary (SCET004, 167 KB Updated: 07/28/2000)
- More Power In Less Space Technical Article (Rev. A) (SCAU001A, 850 KB Updated: 03/01/1996)
- Overview of IEEE Std 91-1984, Explanation of Logic Symbols Training Booklet (Rev. A) (SDYZ001A, 138 KB Updated: 07/01/1996)

| PRICING/AVAILABII | LITY/PKG  |             |           |               |                                    |          | <u>▲Back to Top</u>      |
|-------------------|-----------|-------------|-----------|---------------|------------------------------------|----------|--------------------------|
| ORDERABLE DEVICE  | PACKAGE   | <u>PINS</u> | TEMP (°C) | <u>STATUS</u> | BUDGETARY PRICE USS/UNIT QTY=1000+ | PACK QTY | PRICING/AVAILABILITY/PKG |
| SN74LS139AD       | <u>D</u>  | 16          | 0 TO 70   | ACTIVE        | 0.35                               | 40       | Check stock or order     |
| SN74LS139ADR      | <u>D</u>  | 16          | 0 TO 70   | ACTIVE        | 0.38                               | 2500     | Check stock or order     |
| SN74LS139AN       | <u>N</u>  | 16          | 0 TO 70   | ACTIVE        | 0.32                               | 25       | Check stock or order     |
| SN74LS139AN3      | <u>N</u>  | 16          | 0 TO 70   | OBSOLETE      |                                    |          |                          |
| SN74LS139ANSR     | <u>NS</u> | 16          | 0 TO 70   | ACTIVE        | 0.42                               | 2000     | Check stock or order     |

Table Data Updated on: 2/18/2002

**Products** | Applications | Support | TI&ME



TEXAS INSTRUMENTS © Copyright 1995-2002 Texas Instruments Incorporated. All rights reserved.

Trademarks | Privacy Policy | Terms of Use