

High Speed Optocoupler, 100 kBd, Low Input Current, High Gain

DESCRIPTION

Very high current ratio together with 4000 V_{RMS} isolation are achieved by coupling an LED with an integrated high gain photo detector in a SOIC-8 package. Separate pins for the photo diode and output stage enable TTL compatible saturation voltages with high speed operation. Photodarlington operation is achieved by tying the V_{CC} and V_O terminals together. Access to the base terminal allows adjustment to the gain bandwidth.

The SFH6318 is ideal for TTL applications since the 300 % minimum current transfer ratio with an LED current of 1.6 mA enables operation with one unit load-in and one unit load-out with a 2.2 k Ω pull-up resistor.

The SFH6319 is best suited for low power logic applications involving CMOS and low power TTL. A 400 % current transfer ratio with only 0.5 mA of LED current is guaranteed from 0 $^{\circ}$ C to 70 $^{\circ}$ C.

Caution:

Due to the small geometries of this device, it should be handled with electrostatic discharge (ESD) precautions. Proper grounding would prevent damage further and / or degradation which may be induced by ESD.

FEATURES

- High current transfer ratio, 300 %
- Low input current, 0.5 mA
- High output current, 60 mA
- TTL compatible output, V_{OL} = 0.1 V
- Adjustable bandwidth access to base
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

APPLICATIONS

- Logic ground isolation TTL / TTL, TTL / CMOS, CMOS / CMOS, CMOS / TTL
- EIA RS 232C line receiver
- · Low input current line receiver long lines, party lines
- Telephone ring detector
- Line voltage status indication low input power dissipation
- Low power systems ground isolation

AGENCY APPROVALS

- UL1577, file no. E52744
- cUL, file no. E52744
- DIN EN 60747-5-5 (VDE 0884-5) available with option 1
- CSA 93751

ORDERING INFORMATION					
S F H	6 3 # #	T SOIC-8			
F	PART NUMBER	6.1 mm			
AGENCY CERTIFIED / PACKAGE	CTR (%)				
UL, CSA	≥ 300	≥ 500			
SOIC-8	SFH6318T SFH6319T				
SOIC-8, tube	SFH6318	SFH6319			

RoHS

COMPLIANT

1

Vishay Semiconductors

PARAMETER	TEST CONDITION	PART	SYMBOL	VALUE	UNIT
INPUT		•			•
Reverse voltage			V _R	3	V
Supply and output valtage	V _{CC} (pin 8 to 5), V _O (pin 6 to 5)	SFH6318	V _{CC} , V _O	-0.5 to 7	V
Supply and output voltage	V88 (pin 6 to 3), V8 (pin 6 to 3)	SFH6319	V _{CC} , V _O	-0.5 to 18	V
Input power dissipation			P _{diss}	35	mW
Derate linearly above				50	°C
Free air temperature				0.7	mW/°C
Average input current			I _{F(AVG)}	20	mA
Peak input current	50 % duty cycle; 1 ms pulse width		I _{FRM}	40	mA
Peak transient input current	$t_p \le 1 \ \mu s$, 300 pps		I _{FSM}	1	Α
OUTPUT		•			•
Output current (pin 6)			Ι _Ο	60	mA
Emitter-base reverse current (pin 5 to 7)				0.5	V
Output power dissipation			P _{diss}	150	mW
Derate linearly from 25 °C				2	mW/°C
COUPLER		•			•
Storage temperature			T _{stg}	-55 to +125	°C
Lead soldering temperature	t = 10 s		T _{sld}	260	°C
Junction temperature			Tj	100	°C
Ambient temperature range			T _{amb}	-55 to +100	°C

Note

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not
implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute
maximum ratings for extended periods of the time can adversely affect reliability.

PARAMETER TEST CONDITION SYMBOL MIN. TYP. MAX. U						
PARAMETER	TEST CONDITION	STMBOL	MIIN.	TTP.	MAX.	UNIT
INPUT						
Forward voltage	I _F = 1.6 mA	V _F	-	1.4	1.7	V
Temperature coefficient, forward voltage	I _F = 1.6 mA	$\Delta V_F / \Delta T_{amb}$	-	-1.8	-	mV/°C
OUTPUT						
	I_F = 1.6 mA, I_O = 4.8 mA, V_{CC} = 4.5 V	V _{OL}	-	0.1	0.4	V
Logic low output voltage ⁽¹⁾	$I_F = 1.6 \text{ mA}, I_O = 8 \text{ mA}, V_{CC} = 4.5 \text{ V}$	V _{OL}	-	0.1	0.4	V
	$I_F = 5 \text{ mA}, I_O = 15 \text{ mA}, V_{CC} = 4.5 \text{ V}$	V _{OL}	-	0.15	0.4	V
	I_F = 12 mA, I_O = 24 mA, V_{CC} = 4.5 V	V _{OL}	-	0.25	0.4	V
(1)	$I_F = 0 \text{ mA}, V_O = V_{CC} = 7 \text{ V}$	I _{IO}	-	0.1	250	μA
Logic high output current ⁽¹⁾	$I_F = 0 \text{ mA}, V_O = V_{CC} = 18 \text{ V}$	I _{IO}	-	0.05	100	μA
Logic low supply current ⁽¹⁾	I_F = 1.6 mA, V_O = OPEN, V_{CC} = 18 V	I _{CCL}	-	0.2	1.5	mA
Logic high supply current ⁽¹⁾	$I_F = 0 \text{ mA}, V_O = OPEN, V_{CC} = 18 \text{ V}$	I _{CCH}	-	0.01	10	μA
COUPLER						
Capacitance (input to output) ⁽²⁾	f = 1 MHz	C _{IO}	-	0.6	-	pF
Input capacitance	$f = 1 \text{ MHz}, V_F = 0$	C _{IN}	-	25	-	pF

Notes

Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements.
 T_{amb} = 0 °C to 70 °C. Typical values are specified at T_{amb} = 25 °C.

⁽¹⁾ Pin 7 open.

⁽²⁾ Device considered a two-terminal device: pins 1, 2, 3, and 4 shorted together and pins 5, 6, 7, and 8 shorted together.

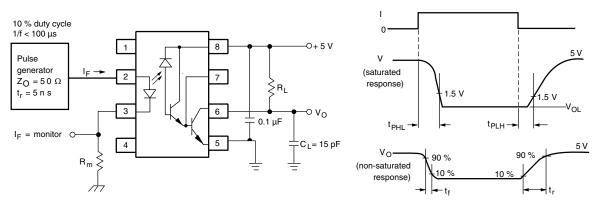
2

Vishay Semiconductors

CURRENT TRANSFER RATIO

PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
	$I_F = 1.6 \text{ mA}, V_O = 0.4 \text{ V}, V_{CC} = 4.5 \text{ V}$	SFH6318	CTR	300	1600	2600	%
Current transfer ratio (1)	$I_F = 0.5 \text{ mA}, V_O = 0.4 \text{ V}, V_{CC} = 4.5 \text{ V}$	SFH6319	CTR	400	2000	3500	%
	$I_F = 1.6 \text{ mA}, V_O = 0.4 \text{ V}, V_{CC} = 4.5 \text{ V}$	SFH6319	CTR	500	1600	2600	%

Notes


T_{amb} = 0 °C to 70 °C. Typical values are specified at T_{amb} = 25 °C.

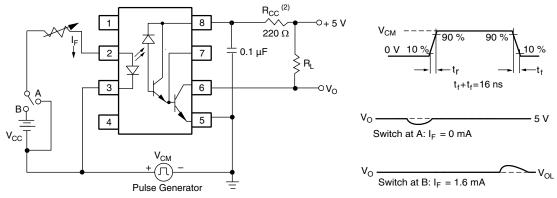
DC current transfer ratio is defined as the ratio of output collector current, I_0 , to the forward LED input current, I_F times 100 %. Pin 7 open. (1) Pin 7 open

SWITCHING CHARACTERISTICS ($T_{amb} = 25 \text{ °C}$, unless otherwise specified)							
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
Propagation delay time to logic low at output	$I_F = 1.6 \text{ mA}, \text{ R}_L = 2.2 \text{ k}\Omega$	SFH6318	t _{PHL}	-	2	10	μs
Propagation delay time to logic low at output ⁽¹⁾	$I_F = 0.5 \text{ mA}, \text{ R}_L = 4.7 \text{ k}\Omega$	SFH6319	t _{PHL}	-	6	25	μs
Propagation delay time to logic low at output ⁽¹⁾	I_F = 12 mA, R_L = 270 Ω	SFH6319	t _{PHL}	-	0.6	1	μs
Propagation delay time to logic high at output	$I_F = 1.6 \text{ mA}, \text{ R}_L = 2.2 \text{ k}\Omega$	SFH6318	t _{PLH}	-	2	35	μs
Propagation delay time to logic high at output ⁽¹⁾	$I_F = 0.5 \text{ mA}, \text{ R}_L = 4.7 \text{ k}\Omega$	SFH6319	t _{PLH}	-	4	60	μs
Propagation delay time to logic high at output ⁽¹⁾	I_F = 12 mA, R_L = 270 Ω	SFH6319	t _{PLH}	-	1.5	7	μs

Note

⁽¹⁾ Pin 7 open. Using a resistor between pin 5 and 7 will decrease gain and delay time.

COMMON MODE TRANSIENT IMMUNITY						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Common mode transient immunity at logic high level output ⁽¹⁾⁽²⁾	$\label{eq:IF} \begin{array}{l} I_{F} = 0 \text{ mA}, \ R_{L} = 2.2 \ k\Omega, \\ V_{CM} = 10 \ V_{P\text{-}P} \end{array}$	CM _H	-	1000	-	V/µs
Common mode transient immunity at logic low level output ⁽¹⁾⁽²⁾	$I_{F} = 1.6 \text{ mA}, \text{ R}_{L} = 2.2 \text{ k}\Omega, \\ V_{CM} = 10 \text{ V}_{P\text{-}P}$	CM _L	-	1000	-	V/µs


Notes

⁽¹⁾ Common mode transient immunity in logic high level is the maximum tolerable (positive) dV_{cm}/dt_{on} the leading edge of the common mode pulse, V_{CM} , to assure that the output will remain in a logic high state (i.e. $V_O > 2 V$) common mode transient immunity in logic low level is the maximum tolerable (negative) dV_{cm}/dt_{on} the trailing edge of the common mode pulse signal, V_{CM} , to assure that the output will remain in a logic low state (i.e. $V_O > 2 V$).

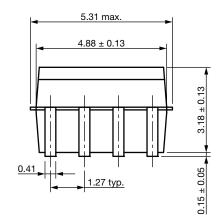
(2) In applications where dv/dt may exceed 50 000 V/µs (such as state discharge) a series resistor, R_{CC} should be included to protect I_C from destructively high surge currents. The recommended value is refer to figure 2. R_{CC} ≅ [(IV)/0.15 I_F (mA)] kΩ.

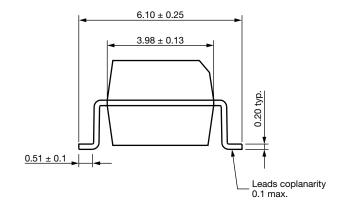
Document Number: 83678

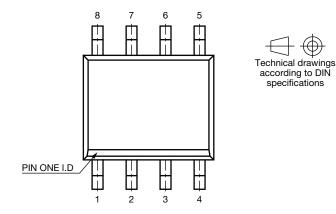
Vishay Semiconductors

www.vishay.com

Fig. 2 - Test Circuit for Transient Immunity and Typical Waveforms


PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT
Climatic classification	According to IEC 68 part 1		55/100/21	
Pollution degree	According to DIN VDE 0109		2	
Comparative tracking index	Insulation group IIIa	CTI	175	
Maximum rated withstanding isolation voltage	According to UL1577, t = 1 min	V _{ISO}	3333	V _{RMS}
Tested withstanding isolation voltage	According to UL1577, t = 1 s	V _{ISO}	4000	V _{RMS}
Maximum transient isolation voltage	According to DIN EN 60747-5-5	V _{IOTM}	6000	V _{peak}
Maximum repetitive peak isolation voltage	According to DIN EN 60747-5-5	V _{IORM}	560	V _{peak}
	$V_{IO} = 500 \text{ V}, \text{ T}_{amb} = 25 ^{\circ}\text{C}$	R _{IO}	≥ 10 ¹²	Ω
Isolation resistance	$V_{IO} = 500 \text{ V}, \text{ T}_{amb} = 100 ^{\circ}\text{C}$	R _{IO}	≥ 10 ¹¹	Ω
	$V_{IO} = 500 \text{ V}, \text{T}_{amb} = \text{T}_{S}$	R _{IO}	≥ 10 ⁹	Ω
Output safety power		P _{SO}	350	mW
Input safety current		I _{SI}	150	mA
Safety temperature		T _S	165	°C
Creepage distance			≥ 4	mm
Clearance distance			≥ 4	mm
Input to output test voltage, method B	$V_{IORM} x 1.875 = V_{PR}$, 100 % production test with $t_M = 1$ s, partial discharge < 5 pC	V _{PR}	1050	V _{peak}
Input to output test voltage, method A	$V_{IORM} x 1.6 = V_{PR}$, 100 % sample test with t _M = 10 s, partial discharge < 5 pC	V _{PR}	896	V _{peak}


Note


• As per IEC 60747-5-5, § 7.4.3.8.2, this optocoupler is suitable for "safe electrical insulation" only within the safety ratings. Compliance with the safety ratings shall be ensured by means of protective circuits.

www.vishay.com

PACKAGE DIMENSIONS (in millimeters)

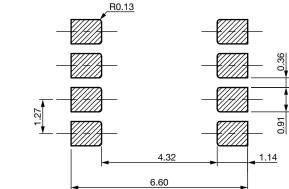
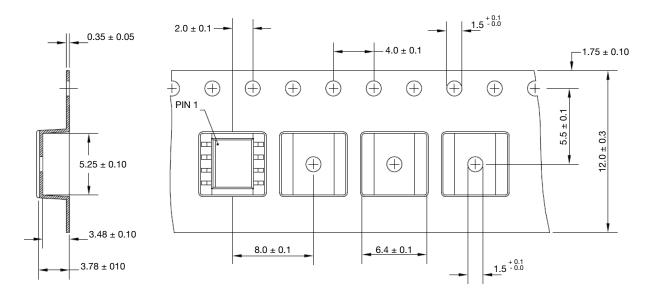


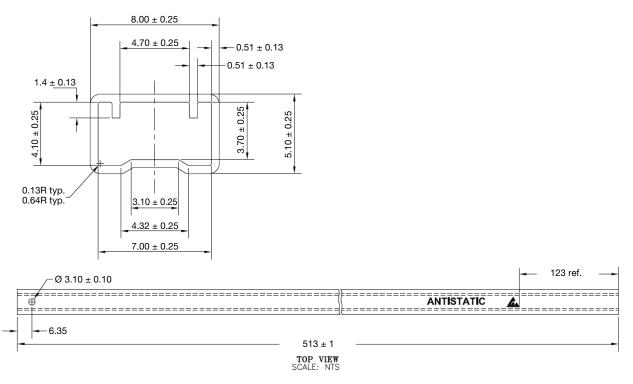
Fig. 3 - Package Drawing

PACKAGE MARKING

Note


• Tape and reel suffix (T) is not part of the package marking.

For technical questions, contact: <u>optocoupleranswers@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>



PACKING INFORMATION

Fig. 6 - Tape and Reel Packing (2000 pieces on reel)

DEVICE PER TUBE			
ТҮРЕ	UNITS/TUBE	TUBES/BOX	UNITS/BOX
SOIC-8	100	30	3000

For technical questions, contact: <u>optocoupleranswers@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay Semiconductors

SOLDER PROFILE

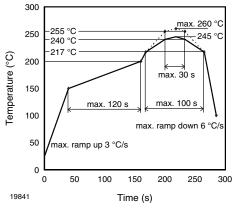


Fig. 8 - Lead (Pb)-free Reflow Solder Profile according to J-STD-020

HANDLING AND STORAGE CONDITIONS

ESD level: HBM class 2 Floor life: unlimited Conditions: $T_{amb} < 30$ °C, RH < 85 % Moisture sensitivity level 1, according to J-STD-020

Footprint and Schematic Information for SFH6318, SFH6319

The footprint and schematic symbols for the following parts can be accessed using the associated links. They are available in Eagle, Altium, KiCad, OrCAD / Allegro, Pulsonix, and PADS.

Note that the 3D models for these parts can be found on the Vishay product page.

PART NUMBER	FOOTPRINT / SCHEMATIC
SFH6318	www.snapeda.com/parts/SFH6318/Vishay/view-part
SFH6318T	www.snapeda.com/parts/SFH6318T/Vishay/view-part
SFH6319	www.snapeda.com/parts/SFH6319/Vishay/view-part
SFH6319T	www.snapeda.com/parts/SFH6319T/Vishay/view-part

For technical issues and product support, please contact optocoupleranswers@vishay.com.

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.