

WF12T，WF08T，WF06T，WF04T $\pm 1.0 \%, \pm 0.5 \%, 0.25 \%, \pm 0.1 \%, \pm 0.05 \%$ TC50

High Precision Thin Film chip resistors Size 1206，0805，0603， 0402
＊Contents in this sheet are subject to change without prior notice．

FEATURE

1．SMD metal film resistor
2．High reliability and stability of 0.5% and below per customer request
3．High performance of TCR： $50 \mathrm{ppm} / \mathrm{K}$ and below per customer request
4．Low current noise
5．$+/-0.05 \%$ is upon the customer request．

APPLICATION

－Medical equipment
－Measuring instrument
－Communication device
－Computer
－Printer

DESCRIPTION

The resistors are constructed in a high grade ceramic body（aluminum oxide）．Internal metal electrodes are added at each end and connected by a resistive layer that is applied to the top surface of the substrate．The composition of the resistive layer is adjusted to give the approximate resistance required and the value is trimmed to nominated value within tolerance which controlled by laser trimming of this resistive layer．
The resistive layer is covered with a protective coat．Finally，the two external end terminations are added．For environmental soldering issue，the outer layer of these end terminations is a Lead－free solder ．

Fig 1．Construction of Chip－R WFxxT

QUICK REFERENCE DATA

Item	General Specification			
Series No．	WF12T	WF08T	WF06T	WF04T
Size code	1206（ 3216 ）	0805（ 2012 ）	0603（ 1608 ）	0402（1005）
Resistance Tolerance	$\pm 1.0 \%, \pm 0.5 \%, \pm 0.25 \%, \pm 0.1 \%, \pm 0.05 \%$			
Resistance Range	$\begin{gathered} 4.7 \Omega \sim 1 \mathrm{M} \Omega \\ (\mathrm{E} 24+\mathrm{E} 192) \end{gathered}$	$\begin{gathered} 4.7 \Omega \sim 1 \mathrm{M} \Omega \\ (\mathrm{E} 24+\mathrm{E} 192) \end{gathered}$	$\begin{aligned} & 4.7 \Omega \sim 680 \mathrm{~K} \Omega \\ & (\mathrm{E} 24+\mathrm{E} 192) \end{aligned}$	$\begin{aligned} & 10 \Omega \sim 100 \mathrm{~K} \Omega \\ & (\mathrm{E} 24+\mathrm{E} 192) \end{aligned}$
TCR（ppm／${ }^{\circ} \mathrm{C}$ ）	$+50 \sim-50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$			
Max．dissipation at $\mathrm{T}_{\text {amb }}=70^{\circ} \mathrm{C}$	1／8W	1／10W	1／16W	1／16W
Max．Operation Voltage（DC or RMS）	200 V	100 V	50 V	25 V
Max．Overload Voltage（DC or RMS）	400 V	200 V	100 V	50 V
Operation temperature	$-55 \sim+155 \prime \mathrm{C}$			

Note ：
1．This is the maximum voltage that may be continuously supplied to the resistor element，see＂IEC publication 60115－8＂

2．Max．Operation Voltage ：So called RCWV（Rated Continuous Working Voltage）is determined by

$$
\text { RCWV }=\sqrt{\text { Rated Power } \times \text { Resistance Value }} \text { or Max. RCWV listed above, whichever is lower. }
$$

DIMENSIONS：（unit：mm）

Type	WF12T	WF08T	WF06T	WF04T
L	3.10 ± 0.10	2.00 ± 0.10	1.55 ± 0.10	1.00 ± 0.05
W	1.60 ± 0.10	1.25 ± 0.10	0.80 ± 0.10	0.50 ± 0.05
A	0.45 ± 0.20	0.25 ± 0.20	0.25 ± 0.15	0.20 ± 0.10
B	0.45 ± 0.20	0.40 ± 0.20	0.30 ± 0.15	0.25 ± 0.10
t	0.60 ± 0.15	0.50 ± 0.15	0.45 ± 0.15	0.35 ± 0.05

MARKING

－3－digits marking for 0603 size
WFxxT has same marking rule as $W R x x \pm 1 \%$ ．
3－digits marking（ $\pm 1 \%$ ： 0603 ）

Nominal resistance				Description											
1．E－24	series			As 0603 WR06X $\pm 5 \%$ ．											
2．E－96 series				The 1st two digit codes are referring to the CODE on the table，the 3rd code is the index of resistance value：$\begin{array}{r} Y=10^{-2}, X=10^{-1}, A=10^{0}, B=10^{1}, C=10^{2}, D=10^{3}, E=10^{4}, F=10^{5} \\ E X: \quad 17.8 \Omega=25 X, 178 \Omega=25 A, 1 K 78=25 B \\ 17 K 8=25 \mathrm{C}, 178 \mathrm{~K}=25 \mathrm{D}, 1 M 78=25 \mathrm{E} \end{array}$											
3．Remark				There is no marking for the items are not under E－24 and E－96 series											
CODE	R＿value														
01	100	13	133	25	178	37	237	49	316	61	422	73	562	85	750
02	102	14	137	26	182	38	243	50	324	62	432	74	576	86	768
03	105	15	140	27	187	39	249	51	332	63	442	75	590	87	787
04	107	16	143	28	191	40	255	52	340	64	453	76	604	88	806
05	110	17	147	29	196	41	261	53	348	65	464	77	619	89	825
06	113	18	150	30	200	42	267	54	357	66	475	78	634	90	845
07	115	19	154	31	205	43	274	55	365	67	487	79	649	91	866
08	118	20	158	32	210	44	280	56	374	68	499	80	665	92	887
09	121	21	162	33	215	45	287	57	383	69	511	81	681	93	909
10	124	22	165	34	221	46	294	58	392	70	523	82	698	94	931
11	127	23	169	35	226	47	301	59	402	71	536	83	715	95	953
12	130	24	174	36	232	48	309	60	412	72	549	84	732	96	976

－4－digits marking for 1206， 0805 size

For E24／E96 series，each resistor is marked with a four digits code on the protective coating to designate the nominal resistance value．For non E24／E96 series，no marking is applied！

Example

RESISTANCE	10Ω	12Ω	100Ω	6800Ω	47000Ω
4－digits marking	10 R 0	12 R 0	1000	6801	4702

－No marking code for 0402 size

FUNCTIONAL DESCRIPTION

Product characterization

Standard values of nominal resistance are taken from the E24／E192 series for resistors with a tolerance of $\pm 1 \%, \pm 0.5 \%, \pm 0.25 \%, \pm 0.1 \%, \pm 0.05 \%$ ．The values of the E24／E192 series are in accordance with＂IEC publication 60063＂．

Derating

The power that the resistor can dissipate depends on the operating temperature；see Fig． 2

Fig． 2 Maximum dissipation in percentage of rated power
As a function of the ambient temperature

MOUNTING

Due to their rectangular shapes and small tolerances，Surface Mountable Resistors are suitable for handling by automatic placement systems．

Chip placement can be on ceramic substrates and printed－circuit boards（PCBs）．
Electrical connection to the circuit is by individual soldering condition．
The end terminations guarantee a reliable contact．

SOLDERING CONDITION

The robust construction of chip resistors allows them to be completely immersed in a solder bath of $260^{\circ} \mathrm{C}$ for 10 seconds．Therefore，it is possible to mount Surface Mount Resistors on one side of a PCB and other discrete components on the reverse（mixed PCBs）．

Surface Mount Resistors are tested for solderability at $235^{\circ} \mathrm{C}$ during 2 seconds within lead－free solder bath．The test condition for no leaching is $260^{\circ} \mathrm{C}$ for 30 seconds．Typical examples of soldering processes that provide reliable joints without any damage are given in Fig 3.

CATALOGUES NUMBERS

The resistors have a catalogue number starting with ．

WF06	T	xxxx	D	T	L
Size code WF12： 1206 WF08： 0805 WF06： 0603 WF04： 0402	Type code T：TCR 50ppm	Resistance code E192＋E24： 3 significant digits followed by no．of zeros $\begin{array}{ll} 102 \Omega & =1020 \\ 37.4 \mathrm{~K} \Omega & =3742 \\ 220 \Omega & =2200 \end{array}$	Tolerance F：$\pm 1.0 \%$ D：$\pm 0.5 \%$ C：$\pm 0.25 \%$ B ：$\pm 0.1 \%$ A ：$\pm 0.05 \%$	Packaging code T ：Reeled	Termination code L＝Sn base （lead free）

1．Reeled tape packaging： 8 mm width paper taping．
5，000pcs／reel for WF12T，WF08T，WF06T；
10，000pcs／reel for WF04T．

TEST AND REQUIREMENTS（JIS C 5201－1 ：1998）

TEST	PROCEDURE	REQUIREMENT
		Resistor
DC resistance Clause 4.5	DC resistance values measured at the test voltages specified below ： $\begin{aligned} & <10 \Omega @ 0.1 \mathrm{~V}, \quad<100 \Omega @ 0.3 \mathrm{~V}, \quad<1 \mathrm{~K} \Omega @ 1.0 \mathrm{~V}, \\ & <10 \mathrm{~K} \Omega @ 3 \mathrm{~V},<100 \mathrm{~K} \Omega @ 10 \mathrm{~V},<1 \mathrm{M} \Omega @ 25 \mathrm{~V},<10 \mathrm{M} \Omega @ 30 \mathrm{~V} \end{aligned}$	Within the specified tolerance
Temperature Coefficient of Resistance（T．C．R） Clause 4.8	Natural resistance change per change in degree centigrade． $\frac{R_{2}-R_{1}}{R_{1}\left(t_{2}-t_{1}\right)} \times 10^{6}\left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$ R_{1} ：Resistance at reference temperature R_{2} ：Resistance at test temperature $\mathrm{t}_{1}: 20^{\circ} \mathrm{C}+5^{\circ} \mathrm{C}-1^{\circ} \mathrm{C}$ $\mathrm{t} 2: 125^{\circ} \mathrm{C}+5^{\circ} \mathrm{C}-1^{\circ} \mathrm{C}$	Refer to ＂QUICK REFERENCE DATA＂
Short time overload （S．T．O．L） Clause 4.13	Permanent resistance change after a 5second application of a voltage 2.5 times RCWV or the maximum overload voltage specified in the above list，whichever is less．	$\Delta R / R \max . \pm(0.2 \%+0.05 \Omega)$
Resistance to soldering heat（R．S．H） Clause 4.18	Un－mounted chips completely immersed for 10 ± 1 second in a SAC solder bath at $260^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$	no visible damage $\Delta R / R \max . \pm(0.1 \%+0.05 \Omega)$
Solderability Clause 4.17	Un－mounted chips completely immersed for 2 ± 0.5 second in a SAC solder bath at $235^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$	good tinning（＞95\％covered） no visible damage
Temperature cycling Clause 4.19	30 minutes at $-55^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}, 2 \sim 3$ minutes at $20^{\circ} \mathrm{C}+5^{\circ} \mathrm{C}-1^{\circ} \mathrm{C}, 30$ minutes at $+155^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}, 2 \sim 3$ minutes at $20^{\circ} \mathrm{C}+5^{\circ} \mathrm{C}-1^{\circ} \mathrm{C}$ ，total 5 continuous cycles	no visible damage $\Delta R / R \max . \pm(0.25 \%+0.05 \Omega)$
Load life（endurance） Clause 4.25	$1000+48 /-0$ hours，loaded with RCWV or Vmax in chamber controller $70 \pm 2^{\circ} \mathrm{C}, 1.5$ hours on and 0.5 hours off	$\Delta \mathrm{R} / \mathrm{R} \max . \pm(0.5 \%+0.05 \Omega)$
Load life in Humidity Clause 4.24	$1000+48 /-0$ hours，loaded with RCWV or Vmax in humidity chamber controller at $40^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ and $90 \sim 95 \%$ relative humidity， 1.5 hours on and 0.5 hours off	$\Delta R / R \max . \pm(0.5 \%+0.05 \Omega)$
Bending strength Clause 4.33	Resistors mounted on a 90 mm glass epoxy resin $\mathrm{PCB}(\mathrm{FR} 4)$ ；bending ： 3 mm ，once for 10 seconds．	$\Delta R / R \max . \pm(0.1 \%+0.05 \Omega)$
Adhision Clause 4.32	Pressurizing force： 5 N ，Test time： $10 \pm 1 \mathrm{sec}$ ．	No remarkable damage or removal of the terminations．
Insulation Resistance Clause 4.6	Apply the maximum overload voltage（DC）for 1minute	$\mathrm{R} \geqq 10 \mathrm{G} \Omega$
Dielectric Withstand Voltage Clause 4.7	Apply the maximum overload voltage（AC）for 1 minute	No breakdown or flashover

PACKAGING

Paper Tape specifications（unit ：mm）

Series No．	A	B	W	F	E
WF12	3.60 ± 0.20	2.00 ± 0.20	8.00 ± 0.30	3.50 ± 0.20	1.75 ± 0.10
WF08	2.40 ± 0.20	1.65 ± 0.20	8.00 ± 0.30	3.50 ± 0.20	1.75 ± 0.10
WF06	1.90 ± 0.20	1.10 ± 0.20	8.00 ± 0.30	3.50 ± 0.20	1.75 ± 0.10
WF04	1.20 ± 0.10	0.7 ± 0.10	8.00 ± 0.30	3.50 ± 0.05	1.75 ± 0.10

Series No．	P1	P0	ΦD	T
WF12	4.00 ± 0.10	4.00 ± 0.10	$\Phi 1.50_{-0.0}^{+0.1}$	Max．1．0
WF08	4.00 ± 0.10	4.00 ± 0.10	$\Phi 1.50_{-0.0}^{+0.1}$	Max．1．0
WF06	4.00 ± 0.10	4.00 ± 0.10	$\Phi 1.50_{-0.0}^{+0.1}$	0.65 ± 0.05
WF04	2.00 ± 0.10	4.00 ± 0.10	$\Phi 1.50_{-0.0}^{+0.1}$	0.40 ± 0.05

Reel dimensions

Symbol	A	B	C	D
（unit ：mm）	$\Phi 178.0 \pm 2.0$	$\Phi 60.0 \pm 1.0$	13.0 ± 0.2	9.0 ± 0.5

Taping quantity

－Chip resistors 5，000 pcs per reel（WF12T，WF08T，WF06T）
－Chip resistors 10，000 pcs per reel（WF04T）

