

WW12C, WW08C, WW06C, WW04C, WW02C

±5%, ±1%, ±0.5%

Low ohm chip resistors (power) Size 1206, 0805, 0603, 0402, 0201

*Contents in this sheet are subject to change without prior notice.

FEATURE

- 1. High power rating and low range
- 2. High reliability and stability
- 3. Suitable for current sensing of small mobile devices
- 4. RoHS compliant & Lead free
- 5. Up side down mounting to minimize resistance drift after soldering

APPLICATION

- Game equipment
- Mobile phone
- Battery pack
- Power supply
- DSC
- HDD

DESCRIPTION

The resistors are constructed in a high grade ceramic body (aluminum oxide). Internal metal electrodes are added at each end and connected by a resistive paste that is applied to the top surface of the substrate. The composition of the paste is adjusted to give the approximate resistance required and the value is trimmed to nominated value within tolerance which controlled by laser trimming of this resistive layer.

The resistive layer is covered with a protective coat. Finally, the two external end terminations are added. For ease of soldering the outer layer of these end terminations is a Tin (lead free) alloy.

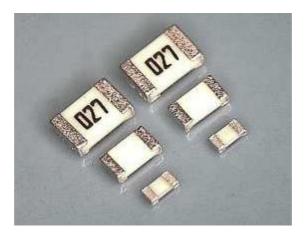
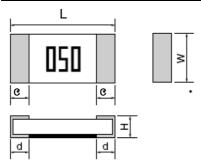


Fig 1. Construction of Chip-R

QUICK REFERENCE DATA


Item	General Specification					
Series No.	WW12C	WW08C	WW06C	WW04C	WW02C	
Size code	1206 (3216)	0805 (2012)	0603(1608)	0402(1005)	0201 (0603)	
Resistance Tolerance			±5%, ±1%, ±0.5%			
Resistance Range	0.015Ω ~ 0.100Ω (E24 +E96)	0.015Ω ~ 0.100Ω (E24 +E96)	0.020Ω ~ 0.100Ω (E24 +E96)	0.020Ω ~ 0.100Ω (E24 +E96)	0.020Ω ~ 0.100Ω (E24 +E96)	
TCR (ppm/°C)						
0.015Ω ~ 0.019Ω	±150 ppm	±200 ppm	N/A	N/A	N/A	
0.020Ω ~ 0.030Ω	±100 ppm	±200 ppm	0 ~ +350 ppm	±350 ppm	±500 ppm	
$0.033\Omega \sim 0.050\Omega$	±100 ppm	±100 ppm	0 ~ +250 ppm	±300 ppm	±300 ppm	
0.051Ω ~ 0.100Ω	±100 ppm	±100 ppm	±150 ppm	±100 ppm	±100 ppm	
Max. dissipation at T _{amb} =70°C	1/2W	1/3 W	1/4 W	1/8 W	1/10 W	
Max. Operation Current (DC or RMS)	2.2 ~ 5.7A	1.14 ~ 4.7 A	1.58 ~ 3.54 A	1.1 ~ 2.5 A	1.0 ~ 2.2 A	
Climatic category (IEC 60068)	55/125/56					

Note :

- 1. This is the maximum current that may be continuously supplied to the resistor element, see "IEC publication 60115-8"
- 2. Max. Operation current : So called RCWC (Rated Continuous Working Current) is determined by $RCWC = \sqrt{Rated Power / Resistance Value}$

MECHANICAL DATA(unit: mm)

Symbol	WW12C	WW08C	WW06C	WW04C	WW02C
L	$\textbf{3.10}\pm\textbf{0.20}$	2.00 ± 0.15	1.60 ± 0.10	1.00 ± 0.05	0.60 ± 0.03
W	1.60 ± 0.15	1.25 ± 0.10	0.80 +0.15 -0.05	0.50 ± 0.15	0.30 ± 0.03
н	0.60 ± 0.10	0.60 ± 0.10	0.50 ± 0.10	0.35 +0.05 -0.10	0.23 ± 0.03
с	0.50 ± 0.25	0.40 ± 0.20	0.30 ± 0.10	0.25 +0.05 -0.10	0.15 ± 0.05
d	0.60 ± 0.20	0.40 ± 0.20	0.30 ± 0.10	0.25 +0.05 -0.10	0.15 ± 0.05

Approval sheet

MARKING

Each resistor is marked with a three-digit code on the substrate to designate the nominal resistance value. Please refer below table list! **0402 and 0201 sizes are no marking!**

•Rated Resistance

						_			
Resistance	Code	Mark	Resistance	Code	Mark		Resistance	Code	Ma
20mΩ	R020	020	40mΩ	R040	040		68mΩ	R068	06
22mΩ	R022	022	43mΩ	R043	043		70mΩ	R070	07
24mΩ	R024	024	47mΩ	R047	047	٦.	75mΩ	R075	07
25mΩ	R025	025	50mΩ	R050	050		80mΩ	R080	08
27mΩ	R027	027	51mΩ	R051	051		82mΩ	R082	08
30mΩ	R030	030	56mΩ	R056	056		90mΩ	R090	_9
33mΩ	R033	033	60mΩ	R060	060		91mΩ	R091	- 09
36mΩ	R036	036	62mΩ	R062	062		100mΩ	R100	R1
39mΩ	R039	039	65mΩ	R065	065				

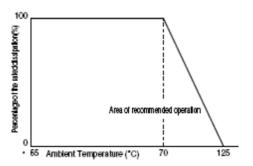
Example:

'	0011175	
R10	= 0.100Ω	
050	= 0.050Ω	

050

70 75

30 32 30


FUNCTIONAL DESCRIPTION

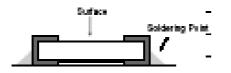
Product characterization

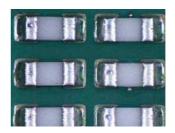
Standard values of nominal resistance are taken from the E96 & E24 series for resistors with a tolerance of $\pm 5\%$ & $\pm 1\%$. The values of the E24/E96 series are in accordance with "IEC publication 60063".

De-rating curve

The power that the resistor can dissipate depends on the operating temperature; see Fig.2

MOUNTING

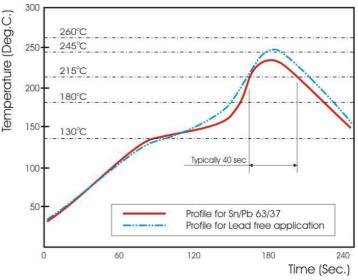

Due to their rectangular shapes and small tolerances, Surface Mountable Resistors are suitable for handling by automatic placement systems.


Chip placement can be on ceramic substrates and printed-circuit boards (PCBs).

Electrical connection to the circuit is by individual soldering condition.

The end terminations guarantee a reliable contact.

Resistive layer is on the bottom side as below !



SOLDERING CONDITION

The robust construction of chip resistors allows them to be completely immersed in a solder bath of 260°C for 10 seconds. Therefore, it is possible to mount Surface Mount Resistors on one side of a PCB and other discrete components on the reverse (mixed PCBs).

Surface Mount Resistors are tested for solderability at 245°C during 3 seconds within lead-free solder bath. The test condition for no leaching is 260°C for 30 seconds. Typical examples of soldering processes that provide reliable joints without any damage are given in Fig 3.

Fig 3. Infrared soldering profile for chip resistor

CATALOGUE NUMBERS

The resistors have a catalogue number starting with .

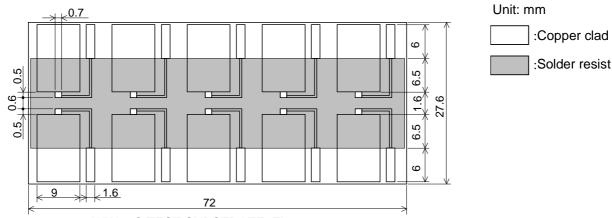
WW04	С	R050	F	т	L	
Size code	Type code	Resistance code	Tolerance	Packaging code	Termination code	
WW02 : 0201 WW04 : 0402 WW06 : 0603 WW08 : 0805 WW12 : 1206	0201, 1/10W 0402, 1/8W 0603, 1/4W 0805, 1/3W 1206, 1/2W	E96 +E24: R is first digit followed by 3 significant digits. $0.020\Omega = R020$ $0.100\Omega = R100$ $0.025\Omega = R025$	J : ±5% F : ±1% D : ±0.5%	T : 7" Reel taping A : 7" Reel taping 15Kpcs/reel	L = Sn base (lead free)	
Reeled tapeReeled tape		WW02C: 8mm width paper taping 2mm pitch, 15,000pcs per reel. WW04C: 8mm width paper taping 2mm pitch, 10,000pcs per reel.				

WW06C: 8mm width paper taping 4mm pitch, 5,000pcs per reel.

WW08C: 8mm width paper taping 4mm pitch, 5,000pcs per reel.

Reeled tape packaging

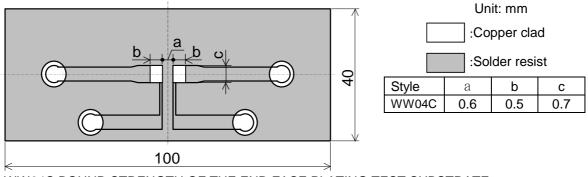
Reeled tape packaging


• Reeled tape packaging WW12C: 8mm width paper taping 4mm pitch, 5,000pcs per reel.

TEST AND REQUIREMENTS

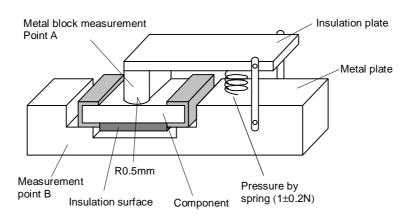
TEST	PROCEDURE	REQUIREMENT
Temperature Coefficient of Resistance (TCR)	Natural resistance change per change in degree centigrade. $\frac{R_2 - R_1}{R_1(t_2 - t_1)} \times 10^6 \text{ (ppm/°C)}$ R ₁ : Resistance at reference temperature R ₂ : Resistance at test temperature t ₁ : 25°C	Test temperature –55 ~ +125°C As defined in P.3
Short time overload (STOL) Sub-Clause 4.13	Permanent resistance change after 2 second application of a current 2.5 times RCWC specified.	ΔR/R max. ±1% no visible damage
Resistance to soldering heat Sub-clause 4.18	Un-mounted chips 10 ± 0.5 seconds, $260\pm5^{\circ}C$	no visible damage Δ R/R max. ±1%
Solderability Sub-clause 4.17	Termination Sn base (lead free) : Un-mounted chip completely immersed in a lead free solder bath, 235°C±5°C, 2±0.5 sec	good tinning (>95% covered) no visible damage
Temperature cycling Sub-clause 4.19	 30 minutes at -55°C±3°C, 2~3 minutes at room temperature, 30 minutes at +125°±3°C, 2~3 minutes at room temperature, Total 5 continuous cycles 	no visible damage ∆R/R max. ±1%
Load life (endurance) Sub-clause 4.25.1	70±2°C, 1000 hours, loaded with rated current, 1.5 hours on and 0.5 hours off	Δ R/R max. ±5% no visible damage
Steady state in Humidity Sub-clause 4.24	1000hrs without current applied in humidity chamber controller at 40°C±2°C and 90~95% relative humidity	Δ R/R max. ±5% no visible damage
Bending strength Sub-clause 4.33	Resistors mounted on a 90mm glass epoxy resin PCB(FR4); bending : 3 mm,	∆R/R max. ±1% no visible damage
Adhesion Sub-clause 4.32	5N, 10±1s	No visible damage

Test substrate

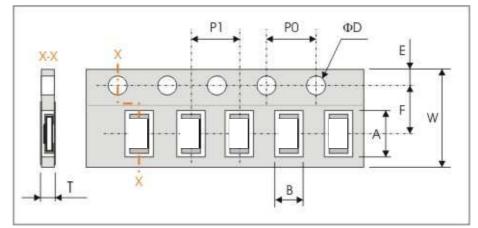


WW04C TEST SUBSTRATE Figure-3

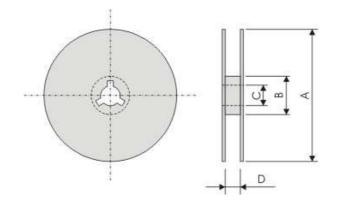
Remarks:


- 1). Material: Epoxy woven glass
- Thickness: 1.6mm Thickness of copper clad: 0.035mm

2). In the case of connection by connector, the connecting terminals are gold plated. However, the plating is not necessary when the connection is made by soldering.


WW04C BOUND STRENGTH OF THE END FACE PLATING TEST SUBSTRATE Figure-4

PACKAGING


Paper Tape specifications (unit :mm)

Series No.	А	В	W	F	E
WW02C	0.67±0.05	0.37±0.05	8.00±0.20	3.50±0.05	1.75±0.10
WW04C	1.15±0.10	0.65±0.10	8.00±0.20	3.50±0.05	1.75±0.10
WW06C	1.90±0.20	1.15±0.15	8.00±0.20	3.50±0.05	1.75±0.10
WW08C	2.50±0.20	1.65±0.15	8.00±0.20	3.50±0.05	1.75±0.10
WW12C	3.60±0.20	2.00±0.15	8.00±0.20	3.50±0.05	1.75±0.10

Series No.	P1	P0	ΦD	Т
WW02C	2.00±0.05	4.00±0.05	$\Phi 1.50^{+0.1}_{-0.0}$	0.45±0.05
WW04C	2.00±0.05	4.00±0.10	Φ 1.50 ^{+0.1} _{-0.0}	Max. 0.5
WW06C	4.00±0.10	4.00±0.10	$\Phi 1.50^{+0.1}_{-0.0}$	Max. 0.8
WW08C	4.00±0.10	4.00±0.10	$\Phi 1.50^{+0.1}_{-0.0}$	Max. 1.0
WW12C	4.00±0.10	4.00±0.10	$\Phi 1.50^{+0.1}_{-0.0}$	Max. 1.0

Reel dimensions

Symbol	А	В	С	D
(unit : mm)	Ф180.0 -1.5	Φ 60.0±1.0	13.0±0.2	9.0+1.0