

DATA SHEET

GENERAL PURPOSE CHIP RESISTORS

RC0805

5%, 1%, 0.5%

RoHS compliant

YAGEO Phícomp

SCOPE

This specification describes RC0805 series chip resistors with lead-free terminations made by thick film process.

APPLICATIONS

• All general purpose application

FEATURES

- Halogen Free Epoxy
- RoHS compliant
 - Products with lead free terminations meet RoHS requirements
 - Pb-glass contained in electrodes, resistor element and glass are exempted by RoHS
- Reducing environmentally hazardous wastes
- High component and equipment reliability
- Saving of PCB space
- None forbidden-materials used in products/production

ORDERING INFORMATION - GLOBAL PART NUMBER & 12NC

Both part numbers are identified by the series, size, tolerance, packing type, temperature coefficient, taping reel and resistance value.

YAGEO BRAND ordering code

GLOBAL PART NUMBER (PREFERRED)

RC0805 <u>X R - XX XXXX L</u>
(1) (2) (3) (4) (5) (6)

(I) TOLERANCE

 $D = \pm 0.5\%$

 $F = \pm 1\%$

 $J = \pm 5\%$ (for Jumper ordering, use code of J)

(2) PACKAGING TYPE

R = Paper taping reel

(3) TEMPERATURE COEFFICIENT OF RESISTANCE

- = Base on spec

(4) TAPING REEL

07 = 7 inch dia. Reel

10 = 10 inch dia, Reel

13 = 13 inch dia, Reel

(5) RESISTANCE VALUE

There are 2~4 digits indicated the resistor value. Letter R/K/M is decimal point, no need to mention the last zero after R/K/M, e.g. I K2, not I K20.

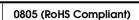
Detailed resistance rules show in table of "Resistance rule of global part number".

(6) DEFAULT CODE

Letter L is system default code for order only (Note)

Resistance rule of global part number

Resistance code rul	le Example
0R	0R = Jumper
XRXX (1 to 9.76 Ω)	IR = I Ω IR5 = I.5 Ω 9R76 = 9.76 Ω
XXRX (10 to 97.6 Ω)	$10R = 10 \Omega$ $97R6 = 97.6 \Omega$
XXXR (100 to 976 Ω)	100R = 100 Ω
XKXX (1 to 9.76 K Ω)	IK = I,000 Ω 9K76 = 9760 Ω
\times MXX (1 to 9.76 M Ω)	$IM = 1,000,000 \Omega$ $9M76 = 9,760,000 \Omega$


ORDERING EXAMPLE

The ordering code of a RC0805 chip resistor, value $56 \times$ with $\pm 1\%$ tolerance, supplied in 7-inch tape reel is: RC0805FR-0756RL.

NOTE

- All our RSMD products meet RoHS compliant and Halogen Free. "LFP" of the internal 2D reel label mentions "Lead Free Process"
- On customized label, "LFP" or specific symbol can be printed

YAGEO Phicomp

Chip Resistor Surface Mount

ROUNT RC SERIES

PHYCOMP BRAND ordering codes

Both GLOBAL PART NUMBER (preferred) and I2NC (traditional) codes are acceptable to order Phycomp brand products.

GLOBAL PART NUMBER (PREFERRED)

For detailed information of GLOBAL PART NUMBER and ordering example, please refer to page 2.

12NC CODE

2322 / 2350	XXXX	<u>x</u> xxx	
(1)	(2)	(3)	(4)

TYPE/		TOL.	RESISTANCE	PAPER	k / PE TAPE ON REE	L (units) ⁽²⁾
0805	IN ⁽¹⁾	(%)	RANGE	5,000	10,000/not preferred	20,000
RCII	2322	±5%	I to I0 M Ω	730 61xxx	730 71xxx	730 81xxx
RC12	2322	±1%	I to I0 $M\Omega$	734 6xxxx	734 7xxx	734 8xxxx
HRCII	2350	±5%	II to 22 M Ω	521 10xxx	-	-
Jumper	2322	-	0 Ω	730 91002	730 91003	730 92002

- (1) The resistors have a 12-digit ordering code starting with 2322 / 2350.
- (2) The subsequent 4 or 5 digits indicate the resistor tolerance and packaging.
- (3) The remaining 4 or 3 digits represent the resistance value with the last digit indicating the multiplier as shown in the table of "Last digit of I2NC".
- (4) Letter L is system default code for order only (Note)

ORDERING EXAMPLE

The ordering code of a RC12 resistor, value $56 \times \text{with } \pm 1\%$ tolerance, supplied in tape of 5,000 units per reel is: 232273465609L or RC0805FR-0756RL.

Last digit of 12NC	
Resistance decade (3)	Last digit
0.01 to 0.0976 X	0
0.1 to 0.976 $ imes$	7
I to 9.76 $ imes$	8
10 to 97.6 $ imes$	9
100 to 976 X	1
I to 9.76 K ^X	2
10 to 97.6 KX	3
100 to 976 KX	4
I to 9.76 M $ imes$	5
10 to 97.6 MX	6

Example:	0.02 X	=	0200 or 200
	0.3 X	=	3007 or 307
	ΙX	=	1008 or 108
	33 KX	=	3303 or 333
	I0 MX	=	1006 or 106

NOTE

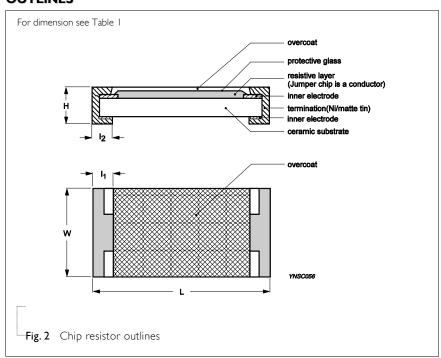
- 1. All our RSMD products meet RoHS compliant and Halogen Free. "LFP" of the internal 2D reel label mentions "Lead Free Process"
- 2. On customized label, "LFP" or specific symbol can be printed

MARKING

YAGEO Phicomp

RC0805

For further marking information, please refer to data sheet "Chip resistors marking"


CONSTRUCTION

The resistor is constructed on top of a high-grade ceramic body. Internal metal electrodes are added on each end to make the contacts to the thick film resistive element. The composition of the resistive element is a noble metal imbedded into a glass and covered by a second glass to prevent environment influences. The resistor is laser trimmed to the rated resistance value. The resistor is covered with a protective epoxy coat, finally the two external terminations (matte tin on Nibarrier) are added. See fig.3

DIMENSIONS

Table I	
TYPE	RC0805
L (mm)	2.00 ±0.10
W (mm)	1.25 ±0.10
H (mm)	0.50 ±0.10
I _I (mm)	0.35 ±0.20
l ₂ (mm)	0.35 ±0.20

OUTLINES

ELECTRICAL CHARACTERISTICS

YAGEO Phicomp

Table 2

CHARACTERISTICS		RC0805 I/8 W
Operating Temperature Range	-5:	5 °C to +155 °C
Maximum Working Voltage		150 V
Maximum Overload Voltage		300 V
Dielectric Withstanding Voltage		300 V
	5% (E24)	I Ω to 22 M Ω
Posistanco Pango	1% (E24/E96)	I Ω to I0 M Ω
Resistance Range	0.5% (E24/E96)	10 Ω to 1 $M\Omega$
	Zero Ohm J	umper < 0.05 Ω
	$I \Omega \le R \le I0 \Omega$	±200 ppm/°C
Temperature Coefficient	$10 \text{ M}\Omega < R \le 22 \text{ M}\Omega$	±200 ppm/°C
	$10 \Omega < R \le 10 M\Omega$	±100 ppm/°C
lump or Critoria	Rated Current	2 A
Jumper Criteria	Maximum Current	5 A

FOOTPRINT AND SOLDERING PROFILES

For recommended footprint and soldering profiles, please refer to data sheet "Chip resistors mounting".

PACKING STYLE AND PACKAGING QUANTITY

Table 3 Packing style and packaging quantity

PRODUCT TYPE	PACKING STYLE	REEL DIMENSION	QUANTITY PER REEL
RC0805	Paper Taping Reel (R)	7" (178 mm)	5,000 units
		10" (254 mm)	10,000 units
		13" (330 mm)	20,000 units

NOTE

FUNCTIONAL DESCRIPTION

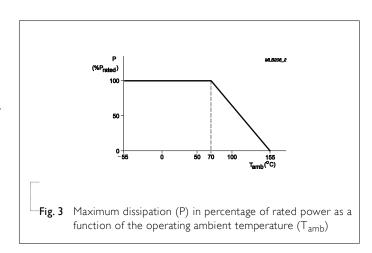
POWER RATING

RC0805 rated power at 70°C is 1/8 W

RATED VOLTAGE

The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:

$$V=\sqrt{(P \times R)}$$

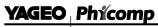

or max. working voltage whichever is less

Where

V=Continuous rated DC or AC (rms) working voltage (V)

P=Rated power (W)

R=Resistance value (\times)


^{1.} For paper tape and reel specification/dimensions, please see the special data sheet "Chip resistors packing"

TESTS AND REQUIREMENTS

Table 4 Test condition, procedure and requirements

IEC 60115-1 4.8	At +25/–55 °C and +25/+125 °C	Refer to table 2
	Formula:	
	T.C.R= $\frac{R_2-R_1}{R_1(t_2-t_1)} \times 10^6 \text{ (ppm/°C)}$	
	Where	
	t_1 =+25 °C or specified room temperature	
	t_2 =-55 °C or +125 °C test temperature	
	R_1 =resistance at reference temperature in ohms	
	R ₂ =resistance at test temperature in ohms	
IEC 60115-1 4.25.1	At 70±5 °C for 1,000 hours, RCWV applied for 1.5 hours on, 0.5 hour off, still air required	$\pm (\text{I.0\%+0.05}\;\Omega\text{})$ for 1%, 0.5% tol.
		$\pm (3.0\% {+} 0.05~\Omega)$ for 5% tol.
		$<$ 100 m Ω for Jumper
IEC 60068-2-2	1,000 hours at 155±5 °C, unpowered	$\pm (1.0\% + 0.05 \ \Omega \)$ for 1%, 0.5% tol.
		$\pm (2.0\% {+} 0.05~\Omega)$ for 5% tol.
		$<$ 50 m Ω for Jumper
MIL-STD-202G Method-106G	Each temperature / humidity cycle is defined at 8 hours, 3 cycles / 24 hours for IOd. with 25 °C / 65 °C 95% R.H. without steps 7a & 7b.	$\pm (0.5\% + 0.05~\Omega)$ for 1%, 0.5% tol. $\pm (2.0\% + 0.05~\Omega)$ for 5% tol.
	unpowered	$<$ 100 m Ω for Jumper
	Parts mounted on test-boards, without condensation on parts	
	Measurement at 24±2 hours after test conclusion	
MIL-STD-202G Method-107G	-55/+125 °C	±(0.5%+0.05 Ω) for 1%,
	Number of cycles required is 300. Devices	0.5% tol. $\pm (1\% \pm 0.05 \ \Omega)$ for 5% tol.
		$<$ 50 m Ω for Jumper
	is 15 minutes. Air – Air	
IEC60115-1 4.13	2.5 times of rated voltage or maximum overload	$\pm (1.0\% + 0.05 \Omega)$ for 1%,
	voltage whichever is less for 5 sec at room temperature	0.5% tol. $\pm (2.0\% + 0.05 \ \Omega)$ for 5% tol.
		$\leq 1000 \cdot 0.03 \cdot 2000 \cdot 0.000 \cdot 0.000$
		Jo maz for jumper
	IEC 60068-2-2 MIL-STD-202G Method-106G MIL-STD-202G Method-107G	$T.C.R = \frac{R_2 - R_1}{R_1(t_2 - t_1)} \times 10^6 (\text{ppm/°C})$ $Where t_1 = +25 ^{\circ}\text{C or specified room temperature}$ $t_2 = -55 ^{\circ}\text{C or } +125 ^{\circ}\text{C test temperature}$ $R_1 = \text{resistance at reference temperature in ohms}$ $R_2 = \text{resistance at test temperature in ohms}$ $R_1 = \text{resistance at test temperature in ohms}$ $R_2 = resistance at test temperature in ohms$ $R_2 = \text{resistance at test temperature in ohms$ $R_2 = \text{resi$

	TEST METHOD	PROCEDURE	REQUIREMENTS	
Board Flex/	IEC 60068-2-21	Chips mounted on a 90mm glass epoxy resin	±(1.0%+0.05 Ω)	
Bending		PCB (FR4)	$<$ 50 m Ω for Jumper	
		3 mm bending	No visible damage	
		Bending time: 60±5 seconds		
Low Temperature	IEC 60068-2-1	The resistor shall be subjected to a DC rated voltage for 1.5 h-on, 0.5 h-off, at -55±3 °C	$\pm (0.5\% + 0.05 \ \Omega \)$ for 19 0.5% tol.	6,
Operation		This constitutes shall be repeated for 96 hours	$\pm (1.0\% + 0.05 \ \Omega)$ for 5%	ś tol.
		However the applied voltage shall not exceed the maximum operating voltage	No visible damage	
Insulation Resistance	IEC 60115-1 4.6	Rated continuous overload voltage (RCOV) for I minute	≥10 GΩ	
		Type RC0805		
		Voltage (DC) 100 ∨		
Dielectric Withstand	IEC 60115-1 4.7	Maximum voltage (V _{rms}) applied for 1 minute Type RC0805	No breakdown or flasho	over
Voltage		Voltage (AC) 300 V _{rms}		
Resistance to Solvent	IPC/JEDEC J-STD-020D	Isopropylalcohol (C ₃ H ₇ OH) followed by brushing	No smeared	
	IPC/JEDEC J-STD-020D IEC 60115-1 4.12		No smeared Resistors range	Value
Solvent		brushing		Value 10 dB
Solvent		brushing	Resistors range	10 dB
Solvent		brushing	Resistors range $R < 100 \Omega$	
Solvent		brushing	Resistors range $R < 100 \Omega$ $100 \Omega \le R < 1 K\Omega$	10 dB 20 dB
Solvent		brushing	Resistors range $R < 100 \Omega$ $100 \Omega \le R < 1 K\Omega$ $1 K\Omega \le R < 10 K\Omega$	10 dB 20 dB 30 dB 40 dB
Solvent		brushing	Resistors range $R < 100 \Omega$ $100 \Omega \le R < 1 K\Omega$ $1 K\Omega \le R < 10 K\Omega$ $10 K\Omega \le R < 100 K\Omega$	10 dB 20 dB 30 dB
Solvent		brushing	Resistors range $R < 100 \Omega$ $100 \Omega \le R < 1 K\Omega$ $1 K\Omega \le R < 10 K\Omega$ $10 K\Omega \le R < 100 K\Omega$ $100 K\Omega \le R < 1 M\Omega$	10 dB 20 dB 30 dB 40 dB 46 dB 48 dB
Noise	IEC 60115-1 4.12	Maximum voltage (Vrms) applied Steady state for 1000 hours at 40 °C / 95% R.H.	Resistors range $R < 100 \Omega$ $100 \Omega \le R < 1 K\Omega$ $1 K\Omega \le R < 10 K\Omega$ $10 K\Omega \le R < 100 K\Omega$ $100 K\Omega \le R < 1 M\Omega$ $1 M\Omega \le R \le 22 M\Omega$ $\pm (1.0\% + 0.05 \Omega) \text{ for } 19$	10 dB 20 dB 30 dB 40 dB 46 dB 48 dB

Chip Resistor Surface Mount RC SERIES 0805 (RoHS Compliant)

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Intermittent Overload	IEC 60115-1 4.39	2.5 times of rated voltage or maximum overload voltage whichever is less for 1 second on and 25 seconds off, total 10,000 cycles	$\pm (1.0\% + 0.05 \Omega)$ for 1%, 0.5% tol. $\pm (2.0\% + 0.05 \Omega)$ for 5% tol. <100 m Ω for Jumper
Solderability			
- Wetting	IPC/JEDEC J-STD-002B test B	Electrical Test not required	Well tinned (≥95% covered)
		Magnification 50X	No visible damage
		SMD conditions:	
		I st step: method B, aging 4 hours at 155 °C dry heat	
		2 nd step: leadfree solder bath at 245±3 °C	
		Dipping time: 3±0.5 seconds	
- Leaching	IPC/JEDEC J-STD-002B test D	Leadfree solder, 260 °C, 30 seconds immersion time	No visible damage
- Resistance to	IEC 60068-2-58	Condition B, no pre-heat of samples	$\pm (0.5\% + 0.05~\Omega)$ for 1%,
Soldering Heat	ILC 00000-2-30	, ,	0.5% tol.
Jorden mg Treat		Leadfree solder, 260 °C, 10 seconds immersion time	$\pm (1.0\% {+} 0.05~\Omega)$ for 5% tol.
		Procedure 2 for SMD: devices fluxed and	$<$ 50 m Ω for Jumper
		cleaned with isopropanol	No visible damage

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 6	Aug. 27, 2013	3 -	- No marking photos updated
Version 5	Feb. 06, 2013	; -	- Marking updated
			- Add 0.5% tolerance
Version 4	Jun 16, 2009	-	- Test Items and methods updated
			- Test requirements upgraded
Version 3	Jul 15, 2008	-	- Change to dual brand datasheet that describe RC0805 with RoHS compliant
			- Description of "Halogen Free Epoxy" added
			- Define global part number
Version 2	Sep 03, 2004	-	- New datasheet for 0805 thick film 1% and 5% with lead-free terminations
			- Replace the 0805 part of pdf files: RC01_I1_21_31_5, RC02_12_22_32_10, and HRC11_5_4
			- Test method and procedure updated
			- PE tape added (paper tape will be replaced by PE tape)
			- High ohmic products combined into standard products.

[&]quot;Yageo reserves all the rights for revising the content of this datasheet without further notification, as long as the products itself are unchanged. Any product change will be announced by PCN."

