

POE-D01-00-E-16

Ver: 16 Page: 1 of 19

PRODUCT SPECIFICATION

PRODUCT: CERAMIC DISC CAPACITOR

TYPE: 50V, 100V, 500V, 1KV, 2KV, TEMPERATURE COMPENSATING CAPACITOR

CUSTOMER:

DOC. NO.: POE-D01-00-E-16

Ver.: 16

APPROVED BY CUSTOMER

VENDOR:

■ WALSIN TECHNOLOGY CORPORATION

566-1, KAO SHI ROAD, YANG-MEI

TAO-YUAN, TAIWAN

☐ PAN OVERSEAS (GUANGZHOU) ELECTRONIC CO.,LTD.

NO.277, HONG MING ROAD, EASTERN SECTION, GUANG ZHOU ECONOMIC AND TECHNOLOGY

DEVELOPMENT ZONE, CHINA

MAKER: PAN OVERSEAS (GUANGZHOU) ELECTRONIC CO.,LTD.

NO.277, HONG MING ROAD, EASTERN SECTION, GUANG ZHOU ECONOMIC AND TECHNOLOGY DEVELOPMENT ZONE, CHINA

POE

Ver: 16 POE-D01-00-E-16 Page: 2 of 19

Record of change

Date	Version		Des	cription	Description				
2008.6.3	1	1. D08-00-E-14 (before		E-01 (1 st edition)					
2008.8.22	2	1.Revised diameter as							
		Before	Now	Before	Now				
		CH5000R5X040*	not available	SL500181X060*	SL500181X050*	8-9			
		CH1010R5X040*	not available	SL500241X070*	SL500241X060*	0)			
		CH501360X050*	CH501360X060*	SL500361X080*	SL500361X070*				
		CH501620X080*	CH501620X060*	SL500391X080*	SL500391X070*				
		CH501680X080*	CH501680X060*	SL101181X060*	SL101181X050*				
		CH501750X080*	CH501750X060*	SL101241X070*	SL101241X060*				
		CH501820X080*	CH501820X070*	SL101361X080*	SL101361X070*				
		CH501101X080*	CH501101X070*	SL101391X080*	SL101391X070*				
i		CH102080X060*	CH102080X050*	SL102680X060*	SL102680X050*	6-7			
i		CH102100X060*	CH102100X050*	SL102121X100*	SL102121X060*	5			
		CH102120X060*	CH102120X050*	SL102151X100*	SL102151X070*				
		CH102620X080*	CH102620X070*	SL102181X100*	SL102181X070*				
		CH102820X100*	CH102820X080*	SL102201X100*	SL102201X080*				
		C11102820X100*	C11102820A080	SL102221X100*	SL102221X080*				
l		2. Complete lead code	A NO 17	SL102221X100	SL102221A060				
1		3.Add last SAP code '		Pb free, epoxy resin					
2008.12.12	3		to 17 th codes of SAP	P/N.		5-9			
		2. Page layout adjus		A. Inn.					
2000 0 10			when the coating resin		ее Ероху.				
2009.8.19	4	1 Change PSA & POE 2. Operating temperature			25°C ~ 125°C	13			
l					ge from $+85^{\circ}$ C to $+125^{\circ}$ C	15			
i			erature didn't change).		ge Holli 103 (to 1123 (
2010.8.24	5				500V 62pF&68pF&75pF.	8			
1			Code of diameter dim			9			
2012/5/10	6	1). Review the size Do	p of the item CH/500V	V/121&151 from "100)" to be "080";	8			
i		2). Review the size Do	p for the item CH/100		be "070", CH/1000V/101	8			
1		from "100" to be '	·070".						
2012/12/5	7	Add 8.6. Ambient Ter				18-19			
2013/5/6	8		diameter φ from 0.60			7,10			
I			6.0mm shall be omitt		$45\pm5^{\circ}$ Solderability time	9 13			
		from 2 ± 0.5 s to 5 :	• •	10m 255(15/10) C to 2	743±3 (* Bolderdonnty time	13			
2013/10/18	9	Review the packing				11			
2015/8/31	10		of the use of epoxy re	sin for 1KV products		8-9			
		1. Modify the content	nts of the temperature	characteristic.		5,			
İ		2. Delete the definit	ion about"Old Part No	o.".		6,7			
l			391 pF (Code of d	iameter dimension i	s 110&120) for P/N CH	8 8			
2015/9/23	11	50V&100V. 4. Delete 82 pF &10	00 pF (Code of diame	ter dimension is 070)	and 120 pF &150 pF (Code	o			
2013/7/23	11		nsion is 080) for P/N (und 120 pr &130 pr (Code	8			
I		5. Delete 56 pF &68	3pF~100pF (Code of d	liameter dimension is	070) for P/N CH 1KV.	8			
					and 24pF~47pF (Code of				
		diameter dimensi	on is 070) for P/N CH	ZKV.					
						67			
2016/3/2	12		able lead code of Lead ient Temp of Allowab		0V/do to 21/3/4-)	6-7 17-18			

ve	r:	10	
Page:	3	of	1

Date	Version		Desc	cription	page
		1. Revised diameter	as below:		9
		Before	Now		
		SL202181J100*	SL202181J080*		
		SL202201J100*	SL202201J080*		
2016/5/3	13	SL202221J100*	SL202221J080*		
		SL202241J100*	SL202241J080*		
		SL202271J100*	SL202271J080*		
		SL202301J120*	SL202301J110*		
		SL202331J120*	SL202331J110*		
2016/11/3	14	1. Delete "CH" serie	s.		5,8,12~13
2016/12/21	15	1. Revised the produ	ct diameter for SL 50V	V~500V	8
2017/9/27	16	2. Delete 8pF~15pF	(Code of diameter dim	nension is 040) for P/N SL 50V&100V. nension is 050) for P/N SL 500V. mension is 050) for P/N SL 1KV.	8

50V, 100V, 500V, 1KV, 2KV temperature compensating ceramic disc capacitor

Ver: 16 POE-D01-00-E-16 Page: 4 of 19

Table of Contents

No.	Item	Page
1	Part number for SAP system	5/19
2	Mechanical	6/19~7/19
3	Capacitance value vs. Rate voltage, product diameter	8/19
4	Marking	8/19
5	Taping Format	9/19
6	Packing specification	10/19
7	Specification and test method	11/19~14/19
8	Cautions & notices	15/19~18/19
9	Drawing of internal structure and material list	19/19
	斯自為	
	地	

POE-D01-00-E-16

Page: 5 of 19

1. Part number for SAP system(total eighteen code):

• Temperature characteristic:

SL: +350~-1000ppm/°C

2 Rated voltage (Vdc):

	Voltage	50V	100V	500V	1000V	2000V
ĺ	Code	500	101	501	102	202

3Capacitance(pF):

Capacitors (pF)	47	100	330	470	820
Code	470	101	331	471	821

QCapacitance tolerance : D: ± 0.5 pF (For6~10pF) \ J: $\pm 5\%$ (For above 10pF)

5 Nominal body diameter dimension:

Diameter size	4mm	5mm	6mm	7mm	8mm	9mm	10mm	11mm	12mm
Code	040	050	060	070	080	090	100	110	120

6 Code of lead type: Please refer to Item "2.Mechanical".

Packing mode and lead's length (identified by 2-figure code)

Taping Code	Description > / / /
AN	Ammo / Pitch of component:12.7 mm
	14417 - 33

Bulk Code	Description
3E	Lead's length L: 3.5mm
04	Lead's length L: 4mm
4E	Lead's length L: 4.5mm
20	Lead's length L: 20mm

8 Length tolerance

zengui tolerance	
Code	Description
A	±0.5 mm(Only for short kink lead code)
В	±1.0 mm/ OGV CORPORALLO
С	Min.
D	Taping special purpose

9Pitch

Code	Description	Code	Description
5	5.0±0.8mm (For Bulk)	7	7.5 ±1mm
5	5.0+0.8mm-0.2mm (For Taping)	0	10.0 ±1mm
2	2.5 ±0.8 mm		

Coating code

Code	Description
P	Phenolic resin -Pb free
A	Halogen free and Pb free, phenolic resin
В	Epoxy Resin, Pb free
Н	Halogen free and Pb free, epoxy resin

50V, 100V, 500V, 1KV, 2KV temperature compensating ceramic disc capacitor

Ver: 16 POE-D01-00-E-16 Page: 6 of 19

2. Mechanical:

Available lead code: (unit: mm)

Available lead	SAP P/N (13-17) digits	Pitch (F)	Lead length (L)	Available rated voltage	Packing	Lead configuration				
	B20C2	2.5 ± 0.8	20 MIN.	50V&100V		D max. T max.				
	B20C5	5.0 ± 0.8	20 MIN.							
	B20C6	6.4 ± 1.0	20 MIN.	50110 10011 50011	Bulk					
Lead style: B	B20C0	10 ± 1.0	20 MIN.	50V&100V, 500V, 1KV,2KV		()				
Straight long	B20C7	7.5 ± 1.0	20 MIN.	1K V,2K V						
lead -	BAND5	5.0 +0.8 -0.2	Taping Spec. (Ref.		Т А	Tap. Ammo	Tan Amma	Ton Ammo	Ton Ammo	
	BAND2	2.5 ± 0.8	to page.10)	50V&100V	Tap. Allillio	Ø d → ←				
_	L05B2	2.5 ± 0.8	5.0 ± 1.0			D max. T max.				
_	L05B5	5.0 ± 0.8	5.0 ± 1.0							
	L05B0 L05B6	10 ± 1.0 6.4 ± 1.0	5.0 ± 1.0 5.0 ± 1.0	-		/ /				
Lead style: L	L05B0	7.5 ± 1.0	5.0 ± 1.0 5.0 ± 1.0	50110 10011 50011	D 11					
Straight short	L4EB5	5.0 ± 0.8	4.5 ± 1.0	50V&100V, 500V, 1KV, 2KV	Bulk					
lead	L4EB7	7.5 ± 1.0	4.5 ± 1.0	1KV, 2KV		* TIF F - H T T T T				
	L4EB0	10 ± 1.0	4.5 ± 1.0	15		ø d 🗕 👢				
	H3EA5	5.0 ± 0.8	3.5 ± 0.5	18.00		a <u>a</u> <u>- </u>				
	H04A5	5.0 ± 0.8	4.0 ± 0.5	10 2 1						
	H4EB5	5.0 ± 0.8	4.5 ± 1.0	50V&100V, 500V,	Bulk					
	H05B5	5.0 ± 0.8	5.0 ±1.0	1KV	154	Visit Control				
	H20C5	5.0 ± 0.8	20 MIN.		517	D max. T max. → →				
Lead style: H	HAND5	5.0 +0.8 -0.2	Taping SPEC. (Ref. to page.10)		Tap. Ammo					
	H05B7	7.5 ± 1.0	5.0 ±1.0							
Inside kink	H05B0 H20C0	10 ± 1.0 10 ± 1.0	$5.0 \pm 1.0 = 549$ 20 MIN.	TEM ALLIANCE		S W W W W W W W W W W W W W W W W W W W				
lead	H04A7	7.5 ± 1.0	4.0 ± 0.5		2 / 三					
	H04A0	10 ± 1.0	4.0 ± 0.5	50V&100V, 500V,	Bulk	'				
	H3EA7	7.5 ± 1.0	3.5 ± 0.5	1KV,2KV	85					
	H3EA0	10 ± 1.0	3.5 ± 0.5	COLL	<u> </u>					
	H4EB7	7.5 ± 1.0	$2/4.5 \pm 1.0$	Ogy	<u> </u>					
	H4EB0	10 ± 1.0	4.5/±1.0	CORROBATION						
<u> </u>	X3EA5	5.0±0.8	11101001	COKPONENT						
	X3EA7	7.5±1.0	3.5 ± 0.5			D max.				
<u> </u>	X3EA0	10±1.0								
Lead style: X	X04A5	5.0±0.8		50X/0-100X/ 500X/		()				
Outside kink	X04A7	7.5±1.0	4.0 ± 0.5	50V&100V, 500V, 1KV, 2KV	Bulk	\				
lead	X04A0	10±1.0		1 IX V, 2 IX V		Sommary Commander of the Commander of th				
ļ	X05B5	5.0±0.8]						
ļ	X05B7	7.5±1.0	5.0 ± 1.0							
}	X05B0	10±1.0								
	D04A5	5.0±1.0				1 <u>2</u> 34 (2003)				
-		+	40.05			D max.				
, , , , , , ,	D04A7	7.5±1.0	4.0 ± 0.5							
Lead style : D	D04A0	10±1.0		50110 10011 50C-	Bulk	()				
Vertical kink short lead	D3EA5	5.0±0.8		50V&100V, 500V,		\ \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\				
	D3EA7	7.5±1.0	3.5 ± 0.5	1KV, 2KV		The state of the s				
	D3EA0	10±1.0				F				
	DAND5	5.0 ^{+0.8} -0.2	Taping SPEC.	1	Tap. Ammo	Ø d→				
	נמווחט	3.0 -0.2	(Ref. to page.10)		rap. Allillo	2014 25 - 2.7.1				

 $50\text{V},\,100\text{V},\,500\text{V},\,1\text{K}\text{V},\,2\text{K}\text{V}$ temperature compensating ceramic disc capacitor

POE-D01-00-E-16

Ver: 16 Page: 7 of 19

Lead type	SAP P/N (13-17) digits	Lead length (L)	Available rated voltage	Packing	Lead configu	ration
	M05B5				D max.	T max.
	M05B7	5.0 ± 1.0				
	M05B0					
Lead style: M	M04B5		50V&100V, 500V, 1KV, 2KV			
Double outside	M04B7			Bulk	x l \ \	y N
kink lead	M04B0	4.0 ± 1.0			Fø d	

- % Lead diameter ϕ = 0.55 +/-0.05mm
- ** Phenolic resin coating for 50V/500V/1KV product; Epoxy resin coating for 1KV or 2KV product.
- **※ e** (Coating **extension** on leads):

For straight lead style: 1.5mmMax when the rated voltage is 50Vdc & 100Vdc;

2.0mmMax when the rated voltage is 500Vdc and 1KVdc;

3.0mmMax when the rated voltage is 2KVdc.

For kink lead style: not exceed the kink.

%When Dφ≥11mm, only for bulk, but Dφ≤10mm can do Bulk or Taping.

POE-D01-00-E-16

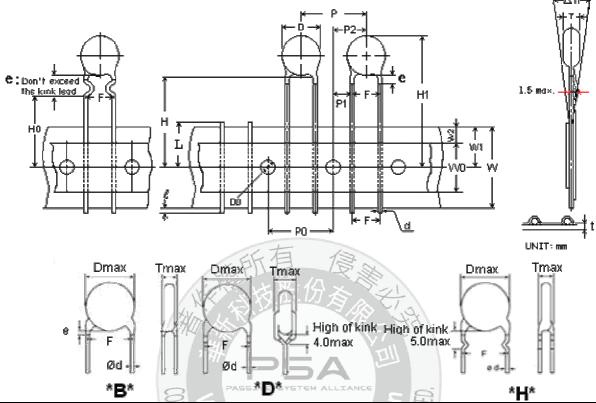
Ver: 16
Page: 8 of 19

3. Capacitance value vs. rated voltage, product diameter:

T.C										S	L									
Rate voltage			5	0V/100	V					500V				11	ζV			2H	ζV	
Dφ	040	050	060	070	080	090	100	050	060	070	080	100	050	060	070	080	060	070	080	110
D max. (mm)	5.0	6.0	7.0	8.0	9.0	10.0	11.0	6.0	7.0	8.0	9.0	11.0	6.0	7.0	8.0	9.0	7.5	8.5	9.5	12.5
T max. (mm)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	4.0	4.0	4.0	4.0	4.0	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
2 3																				
4																				
5																				
6																				
7																				
8																				
10 12																				
15	150												150				150			
18	180							180					180				180			
20	200							200					200				200			
22	220							220					220				220			
24	240							240					240				240			
27	270							270					270				270			
30	300							300					300				300			
33	330							330					330				330			
36 39	360 390							360 390					360 390				360 390			
47	470							470					470				470			
51	510							510					510				510			
56	560							560					560				560			
68	680							680	· +	-	1-		680				680			
75	750							750	7年		12			750			750			
82	820						13	820	1		18	150		820			820			
100	101					- 4	1	101	. n	1 <i>//</i>		T. J.C.,		101				101		
120		121				1	Y	2 _ 2	121	J J T	<u>` </u>	- X - C	21	121					121	
150 180		151 181				/Jr.	1, 1	√ <u>~</u> },	151	181	<i>8</i> 7.	2	1/2		151 181				151 181	
200		101	201			/ 1 2 2 /				201		\sim	7	1.7	101	201			201	
220			221			17714	/ 💢	3		221		:=	7	1		221			221	
240			241				ا السلا	7			241	By /							241	
270				271			15.	7			271	15		1					271	
300				301							301		- 1							301
330				331							331									331
360				361				PASSI	VC SY	STEM	ALLEA	361								
390				391	471	6	4					391		9						1
470 500					471	501	4						O L	5						-
510					1	511	9						3 8	1						
560						561	O					, f	70	4/						
680						1	681					6	76	1						
750						16	751	10				NO Z	15	7						
820						1.	821		h		. f. (5)		HB.							
PACKING			TAP	ING or B	ULK		13/1	12	TAP	NG or B	ULK	. W.		TAPING			TAP	ING or E	ULK	BULK
COATING						Phenol	ic resin						Pheno	lic resin	or Epoxy	Resin		Epoxy	Resin	

4. Marking:

i. Mai Kilig.					
		SL			
Marking	(2)	47 J (4) 1 KV (6)			
Remarks		UK — (s)			
(1). Temp. char.	SL: No markir	ng.			
(2). Rated capacitance	Identified by 3-	Figure Code. Ex. 47pF→"47",470pF→"471"			
	50V&100V	Marked with code "" under the rated capacitance.			
(3). Rated voltage	500V	No any marking under the rated capacitance.			
	1000V&2000V	Marked with code: 1000V→"1KV", 2000V→"2KV"			
(4). Capacitance tolerance	C: ±0.25pF (For below 5pF) \ D: ±0.5pF (For6~10pF) \ J: ±5% (For above 10pF)				
(5). Manufacturer's identification	Shall be marked as "从", but DΦ≤060 shall be omitted.				
(6). Halogen and Pb free	There is a "" Pb free Epoxy.	marking under the code "V" when the coating resin is Halogen and			



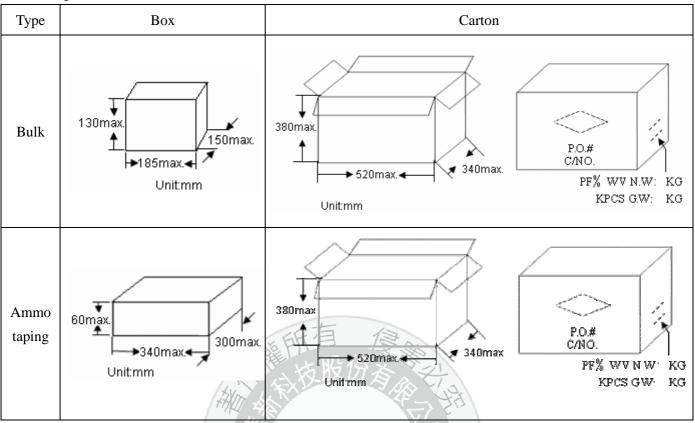
POE-D01-00-E-16

Ver: 16 Page: 9 of 19

5. Taping specifications:

- * Lead spacing: $F=5.0^{+0.8}_{-0.2}$ (mm)
 - 12.7mm pitch/lead spacing 5.0mm taping Lead code: *BAND5 & *DAND5 & *HAND5

Item	景台	Symbol	Spec	cification 🔎	Remarks	
Item	至 5	Symbol	Value	Tolerance	Remarks	
Body diameter	(0, 2)	D	*	max.	See Section"3. Capacitance value vs. rated	
Body thickness	1/1/2	$\Omega_{\Delta}T$	*	max.	voltage, product diameter".	
Lead-wire diameter	28/10	dn	0.55	±0.05		
Pitch of component		P	12.7	±1.0		
Feed hole pitch		-///P0 //	/ 12.7	±0.3	Cumulative pitch erroe:1.0mm/20 pitch	
Feed hole center to lead		PÍ	3.85	±0.7	To be measured at bottom of clinch	
Hole center to component center		P2	6.35	±1.3		
Lead-to-lead distance		F	5.0	+0.8,-0.2		
Component alignment, F-R		∆h	0	±2.0		
Tape width		W	18.0	+1.0,-0.5		
Hole-down tape width		W0	8.0	min.		
Hole position		W1	9.0	+0.75,-0.5		
Hole-down tape position		W2	3.0	max.		
Height of component form tape	For straight lead type	H	20.0	+1.0 -0.5		
center	For kinked lead type	H0	16.0	±0.5		
Component height		H1	32.25	max.		
Lead-wire protrusion			2.0	max.	Or the end of lead wire may be inside the tape.	
Food hole diameter			4.0	±0.2		
Total tape thickness			0.7	±0.2	Ground paper:0.5±0.1mm	
Length of sniped lead			11.0	max.		
Coating rundown on leads	e	Please refer to page 6 "e(Coating extension on leads)".				


6. Packing Baggage:

 $50\text{V},\,100\text{V},\,500\text{V},\,1\text{K}\text{V},\,2\text{K}\text{V}$ temperature compensating ceramic disc capacitor

Ver: 16 POE-D01-00-E-16 | Page: 10 of 19

6.1 Packing size:

6.2 Packing quantity:

Packing Type	The	e code of 14th to15th in SAP P/N	MPQ (MPQ (Kpcs/Box)			
Tanina		AN C	(2)	7	Phenolic resin		
Taping		AN A	ogy 111 1.5		Epoxy resin		
Packing Type	Lead length	Size code of 10th to 12th/00/ in SAP P/N	MPQ (Kpcs/Bag)	Kpcs/Box	Remark		
		040~070	1	3	Phenolic resin		
	Long lead	080~100	1	2	Phenolic resin		
	(L≧16mm)	050~100	1	2	Epoxy resin		
Bulk		110~120	0.5	1.5			
Duik		040~060	1	6			
	Short lead	070~080	1	4			
	(L < 16mm)	090~100	1	3			
		110~120	1	2			

POE-D01-00-E-16

Page: 11 of 19

7. Specification and test method:

7.1 SCOPE: THIS SPECIFICATION APPLIES TO TEMPERATURE COMPENSATING CERAMIC DISC CAPACITOR.

7.2 TEST CONDITIONS:

UNLESS OTHERWISE SPECIFIED, ALL TESTS SHALL BE OPERATED AT THE STANDARD TEST CONDITIONS OF TEMPERATURE 5°C TO 35°C AND RELATIVE HUMIDITY 45% TO 85%. WHEN FAILS A TEST, RETEST BE OPERATED AT THE CONDITIONS OF TEMPERATURE 25°C \pm 2°C, RELATIVE HUMIDITY OF 60% TO 70% AND BAROMETRIC PRESSURE 860 TO 1060 MBAR.

7.3 HANDLE PROCEDURE: TO AVOID UNEXPECT TESTING RESULTS FROM OCCURRING, THE TESTED CAPACITOR MUST BE KEPT AT ROOM TEMPERATURE FOR AT LEAST 30 MINUTES AND COMPLETELY DISCHARGED.

7.4 TEST ITEMS:

ITEM	POST-TEST REQUIREMENTS	TESTING PROCEDURE					
APPEARANCE STRUCTURE SIZE	NO ABNORMALITIES	AS SECTION 3.					
MARKING	横手	AS STATED IN SECTION 4					
	BETWEEN TERMINALS: NO ABNORMALITIES	A. BELOW 1KV: 300% RATED VOLTAGE WITH 50mA MAX. CHARGING CURRENT FOR 1~5 SEC. B. 1KV & ABOVE: 200% RATED VOLTAGE WITH 50mA MAX. CHARGING CURRENT FOR 1~5 SEC.					
WITHSTAND VOLTAGE	BETWEEN TERMINAL AND ENCLOSURE: NO ABNORMALITIES	SMALL METALLIC BALLS WITH 1mm DIAMETERS SHALL BE PUT ON A VESSEL AND THE TEST CAPACITOR SHALL BE SUBMERGED EXCEPT 2mm FROM THE TOP OF ITS COMPONENT BODY. THE TEST VOLTAGE SHALL BE APPLIED BETWEEN THE SHORT-CIRCUITED TERMINALS AND THE METALLIC BALLS. (APPLY 1.3KV DC OF RATED VOLTAGE BETWEEN TERMINALS AND ENCLOSURE FOR 1~5 SEC)					
INSULATION RESISTANCE	10000 MΩ MIN	INSULATION RESISTANCE SHALL BE MEASURED AT 60±5 SECONDS AFTER APPLIED VOLTAGE (RATED) RATED VOLTAGE: 50V=50V, 100V=100V, 500V & ABOVE=500V					
CAPACITANCE	TOLERANCE: C: ±0.25PF D: ±0.50PF J: ±5% K: ±10%	TESTING FREQUENCY : 1 MHZ ± 20% TESTING VOLTAGE : 1.0 VRMS					
OPERATING TEMPERATURE RANGE	-25°C ~ +125°C						
Q FACTOR	$ \begin{array}{c c} 30 \text{ PF} \\ \& \text{ ABOVE} \end{array} \hspace{0.5cm} Q \geq 1000 \\ \hline \text{BELOW} \\ 30 \text{PF} \hspace{0.5cm} Q \geq 400 + 20 \times C \\ \end{array} $	AS ABOVE STIPULATION OF CAPACITANCE					

50V, 100V, 500V, 1KV, 2KV TEMPERATURE COMPENSATING CERAMIC DISC CAPACITOR POE-D01-00-E-16 Page: 12 of 19

Ver: 16

ITEM	POST-TEST REQUIREMENTS TESTING PROCEDURE					E			
		ACCORDING TO STEP 1 TO 5 IN ORDER, MEASURED CAPACITANCE WHEN TEMPERATURE REACH BALANCE AND TEMPERATURE COEFFICIENT SHALL BE CALCULATED ON THE FOLLOWING FORMULA: PPM/°C =(C2-C1)×10E6/C1(T2-T1)							
	TEMPERATURE COEFFICIENT : SL :+350~-1000 ppm/°C	Step	1	2	3	4	5]	
	FOR (+20°C ~+85°C)	Temp. (°C)	25±2	20±3	25±2	85±2	25±2	-	
TEMPERATURE CHARACTERISTIC		NOTE : C1 = C2 = CAPACI T1 = TEMPEI T2 = TEMPEI	ITANCE RATURI	E AS STE E AS STE	EP 2 OR 4 EP 3	4			
	CAPACITANCE TOLERANCE : WITHIN ±0.2% OR ±0.05PF, WHICHEVER IS LARGE	T2 = TEMPERATURE AS STEP 2 OR 4 ACCORDING TO ABOVE STEP 1,3 & 5, CAPACITANCE TOLERANCE SHALL BE CALCULATED ON THE FOLLOWING FORMULA: △C%=(G - S)/C1 NOTE: G = GREATEST CAPACITANCE AS TESTING RESULT OF STEP 1,3 & 5 S = LEAST CAPACITANCE AS TESTING RESULT OF STEP 1,3 & 5 C1 = CAPACITANCE AS STEP 3							
TERMINAL STRENGTH	TENSIBLE STRENGTH: NO BREAKDOWN BENDING STRENGTH:	E DIA.0.5 M/M. LOADING WEIGHT 0.5 KGS, FOR SECONDS. E DIA.0.6 M/M. LOADING WEIGHT 1.0 KGS, FOR SECONDS. E DIA.0.5 mm, LOADING WEIGHT 0.25 KGS. E DIA.0.6 mm, LOADING WEIGHT 0.5 KGS.							
	APPEARANCE : NO ABNORMALITIES CAP.CHANGE :	(BENDING B LEAD WIRE TO 2.0 M/M I (A) BODY DI WHICH T SECOND	OR TEF FORM E [A.≦5.0 ΓEMPE] OS.	RMINAL BODY. Imm: INT RATURE	S SHAL TO THE :: 260(-	L BE IM MOLTE +5/-0)°	MERSI N SOLE	DER OF 3.0±0.5	
SOLDERING HEAT	WITHIN ±2.5% OR ±0.25PF, WHICHEVER IS LARGE.	(B) BODY DIA. > 5.0mm: INTO THE MOLTEN SOLDER OF WHICH TEMPERATURE 260(+5/-0)°C FOR 5~10 SECONDS.							
RESISTANCE	WITHSTAND VOLTAGE: (BETWEEN TERMINALS) NO ABNORMALITIES	THEN LEAVE AT STANDARD TEST CONDITIONS FOR 1~2 HOURS, THEN MEASURED. **WHEN SOLDERING CAPACITOR WITH A SOLDERING IRON, IT SHOULD BE PERFORMED IN FOLLOWING CONDITIONS. TEMPERATURE OF IRON-TIP: 350~400 °C SOLDERING IRON WATTAGE: 50W MAX.							
SOLDERABILITY	LEAD WIRE SHALL BE SOLDERED OVER 75% OF THE CIRCUMFERENTIAL DIRECTION.	SOLDERING TIME: 3.5 SEC. MAX. TO COMPLY WITH JIS-C-5102 8.4 SOLDER TEMPERATURE245±5°C AND DIPPING TIME 5±0.5 SECONDS FLUX: WEIGHT RATIO OF ROSIN 25%						±0.5	

50V, 100V, 500V, 1KV, 2KV TEMPERATURE COMPENSATING CERAMIC DISC CAPACITOR POE-D01-00-E-16 Page: 13 of 19

Ver: 16

ITEM	POST-TEST REQUIREMENTS	TESTING PROCEDURE
HUMIDITY CHARACTERISTIC	APPEARANCE: NO ABNORMALITIES CAP. CHANGE: SL: WITHIN $\pm 5\%$ OR ± 0.5 PF, WHICHEVER IS LARGE Q FACTOR: SL: LESS THAN 10 PF ==> Q $\geq 200 + 10 \times C$ MORE THAN 10 PF AND LESS THAN 30 PF => Q $\geq 275 + 5 \times C / 2$ MORE THAN 30 PF => Q ≥ 350 INSULATION RESISTANCE:	CAPACITORS SHALL BE SUBJECTED TO A RELATIVE HUMIDITY OF 90 \sim 95% AT 40 ± 2°C FOR 500(+24/-0) HOURS, THEN DRIED FOR 1 \sim 2 HOURS AND MEASURED.
HUMIDITY LOADING	1000MΩ MIN. APPEARANCE: NO ABNORMALITIES CAP.CHANGE: SL: WITHIN ±7.5% OR ±0.75PF, WHICHEVER IS LARGE Q FACTOR: SL: LESS THAN 30PF => Q \geq 100 + 10 \times C / 3 MORE THAN 30PF => Q \geq 200 INSULATION RESISTANCE: 500MΩ MIN.	CAPACITORS SHALL BE SUBJECTED TO A RELATIVE HUMIDITY OF 90 ~ 95% AT 40±2°C FOR 500(+24/-0) HOURS WITH RATED VOLTAGE APPLIED (LESS THAN 50mA), THAN DRIED FOR 1~2 HOURS AND MEASURED.
HIGH TEMPERATURE LOADING	APPEARANCE: NO ABNORMALITIES CAP. CHANGE: SL: WITHIN $\pm 3\%$ OR ± 0.3 PF, WHICHEVER IS LARGE Q FACTOR: SL: LESS THAN 10 PF => Q $\geq 200 + 10 \times C$ MORE THAN 10 PF & LESS THAN 30 PF => Q $\geq 275 + 5 \times C / 2$ MORE THAN 30 PF => Q ≥ 350 INSULATION RESISTANCE: 1000 M Ω MIN.	CAPACITORS SHALL BE SUBJECTED TO A TEST OF: (A) BELOW 1KV: 200% RATED VOLTAGE WITH 50mA MAX. (B) 1KV & ABOVE: 150% RATED VOLTAGE WITH 50mA MAX. FOR 1000(+48/-0) HOURS AT 125°C ± 2°C (FOR CH & SL) AND THEN DRIED FOR 1~2 HOURS AND MEASURED.

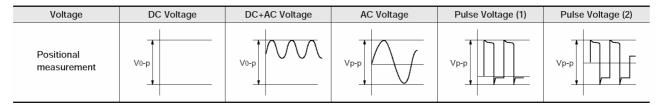
50V, 100V, 500V, 1KV, 2KV TEMPERATURE COMPENSATING CERAMIC DISC CAPACITOR POE-D01-00-E-16 Page: 14 of 19

Ver: 16

ITEM	POST-TEST REQUIREMENTS	TESTING PROCEDURE
	APPEARANCE :	CAPACITORS SHALL BE SUBJECTED TO:
	NO ABNORMALITIES	$-25\pm3^{\circ}\mathbb{C}(30\pm3\min) \rightarrow 25^{\circ}\mathbb{C}(3\min) \rightarrow 125\pm3^{\circ}\mathbb{C}(30\pm3\min) \rightarrow$ 25°\mathcal{C}(3\text{min}) FOR 5 CYCLE.
	CAP. CHANGE :	
	WITHIN ±5% OR ±0.5PF,	
TEMPERATURE	WHICHEVER IS LARGE	
CYCLING	D.F.	
	$C < 30pF : Q \ge 275 + (5/2)C$	
	$C \ge 30 pF : Q \ge 350$	
	INSULATION RESISTANCE :	
	1000 MΩ MIN.	

POE-D01-00-E-16

Ver: 16 Page: 15 of 19


8. Cautions & notices:

8.1. Caution (Rating)

I. Operating Voltage

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range.

When the voltage is applied to the circuit, starting or stopping may generate irregular voltage for a transit period because of resonance or switching. Be sure to use a capacitor with a rated voltage range that includes these irregular voltages.

II. Operating Temperature and Self-generated Heat

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself. When the capacitor is used in a high frequency current, pulse current or similar current, it may self-generate heat due to dielectric loss. The frequency of the applied sine wave voltage should be less than 100kHz. The applied voltage load (*) should be such that the capacitor's self-generated heat is within 20°C at an atmosphere temperature of 25°C. When measuring, use a thermocouple of small thermal capacity-K of \emptyset 0.1mm in conditions where the capacitor is not affected by radiant heat from other components or surrounding ambient fluctuations.

Excessive heat may lead to deterioration of the capacitor's characteristics and reliability. (Never attempt to perform measurement with the cooling fan running. Otherwise, accurate measurement cannot be ensured.)

III. Fail-Safe

When capacitor is broken, failure may result in a short circuit. Be sure to provide an appropriate fail-safe function like a fuse on your product if failure would follow an electric shock, fire or fume.

8.2. Caution (Storage and operating condition)

I. Operating and storage environment

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed –10 to 40 degrees centigrade and 15 to 85 % for 6 months maximum and use within the period after receiving the capacitors.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

50V, 100V, 500V, 1KV, 2KV TEMPERATURE COMPENSATING CERAMIC DISC CAPACITOR POE-D01-00-E-16 Page: 16 of 19

8.3. Caution (Soldering and Mounting)

I. Vibration and impact

Do not expose a capacitor or its leads to excessive shock or vibration during use.

II. Soldering

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor.

Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element. When soldering capacitor with a soldering iron, it should be performed in following conditions.

Temperature of iron-tip: 400 degrees C. max.

Soldering iron wattage: 50W max.

Soldering time: 3.5 sec. max.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

8.4. Caution (Handling)

Vibration and impact

Do not expose a capacitor or its leads to excessive shock or vibration during use.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRDUCT IS USED.

8.5. Notice

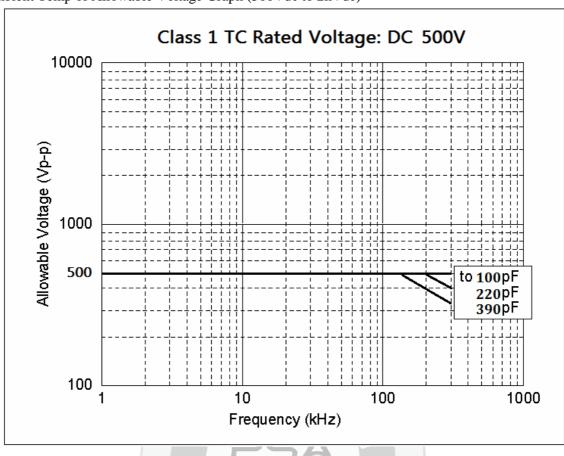
8.5.1. Notice (Soldering and Mounting)

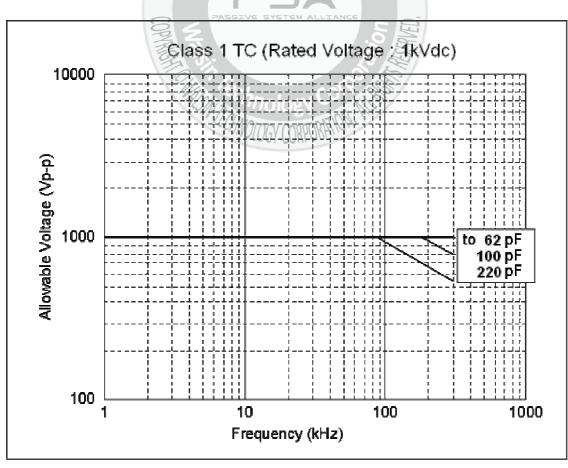
Cleaning (ultrasonic cleaning)

To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity: Output of 20 watts per liter or less.

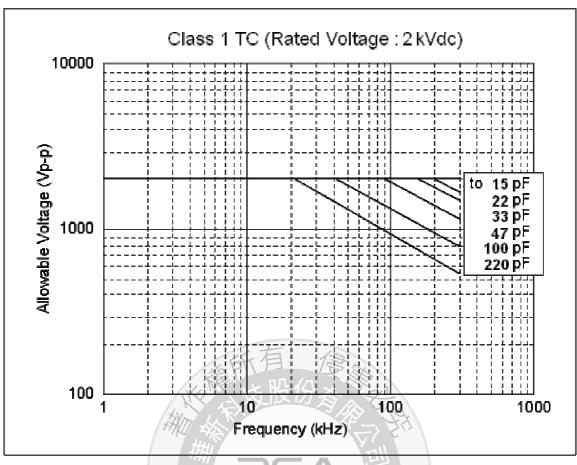
Rinsing time: 5 min. maximum.

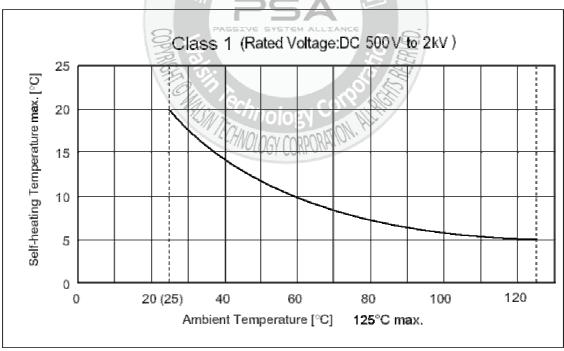

Do not vibrate the PCB/PWB directly.


Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

50V, 100V, 500V, 1KV, 2KV TEMPERATURE COMPENSATING CERAMIC DISC CAPACITOR POE-D01-00-E-16 Ver: 16
Page: 17 of 19

8.6. Ambient Temp of Allowable Voltage Graph (500Vdc to 2kVdc)

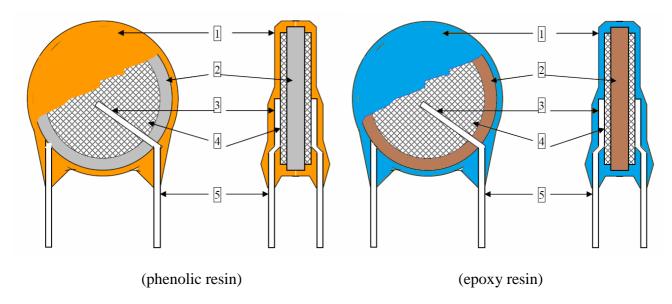




 $50\text{V},\,100\text{V},\,500\text{V},\,1\text{K}\text{V},\,2\text{K}\text{V}$ temperature compensating ceramic disc capacitor

POE-D01-00-E-16

Ver: 16 Page: 18 of 19


The ambient temperature and the surface temperature of capacitor must be 125° C or lower. (Including self-heating.)

 50V, 100V, 500V, 1KV, 2KV TEMPERATURE COMPENSATING CERAMIC DISC CAPACITOR
 POE-D01-00-E-16
 Ver: 16

 Page: 19 of 19

9. Drawing of internal structure and material list:

		ELE	有每	
NO.	部位	材質	構成部份	供應商
NO.	Part name	Material	Component	Vendor
1 1 2 0 1		Phenolic resin	Phenolic resin, Filler, Pigment	Namics
1	Insulation Coating	Epoxy resin	Epoxy resin, SiO2, TiO2	Kai Hua
			SA	Hua Xing
2	Dielectric Element	Ceramic	BaTiO3	Wang Feng
		3000		Fenghua
3	Solder	Tin-silver	Sn97.5-Ag2.5	Huajun
3	Solder	Till-suver	10 ng/	Haili
4	Electrodes	A a LECHNO	OGY CORP Silver, Glass frit	Daejoo
4	Electrodes	Ag	OUT COM SHVEL, Glass III	Xinguang
5	Leads wire	Tinned copper	Substrate metal:Fe&Cu	Hengtai
)	Leaus wife	clad steel wire	Surface plating:Sn 100%	Wuhu Taililai