**PSA** 

50V,100V,500V,1KV,2KV Hi-K CERAMIC DISC CAPACITOR FOR DOWN SIZE PRODUCT

POE-D04-00-E-11

Ver: 11 Page: 1 / 16

# PRODUCT SPECIFICATION

PRODUCT: CERAMIC DISC CAPACITOR

50V, 100V, 500V, 1KV, 2KV HI-K

**TYPE: CERAMIC** 

**CAPACITOR DOWN SIZE PRODUCT** 

| CUSTOMER: | 横所有侵勢                      |
|-----------|----------------------------|
| DOC. NO.  | POE-D04-00-E-11            |
| Ver.:     | PSA P                      |
| COPYRIGH  | Selling Arion              |
| API       | PROVED BY CUSTOMER         |
|           | ECHNOLOGY CORPORATION. RES |

| VENDOR:                                        |                  |
|------------------------------------------------|------------------|
| □ WALSIN TECHNOLOGY CORPORATION                |                  |
| 566-1, KAO SHI ROAD,YANG-MEI                   |                  |
| TAO-YUAN, TAIWAN                               | 8                |
| ☐ PAN OVERSEAS (GUANGZHOU) ELECTRONIC CO.,LTD. | VANISN           |
| NO.277,HONG MING ROAD,EASTERN SECTION,         |                  |
| GUANG ZHOU ECONOMIC AND TECHNOLOGY             |                  |
| DEVELOPMENT ZONE,CHINA                         |                  |
|                                                |                  |
| MAKER:                                         |                  |
| ☐ PAN OVERSEAS (GUANGZHOU) ELECTRONIC CO.,LTD. | POFfectronic POE |
| NO.277,HONG MING ROAD,EASTERN SECTION,         |                  |
| GUANG ZHOU ECONOMIC AND TECHNOLOGY             |                  |
| DEVELOPMENT ZONE,CHINA                         |                  |



POE-D04-00-E-11

Ver: 11 Page: 2 / 16

## **Record of change**

| Date       | Version | Description                                                                                       | page       |
|------------|---------|---------------------------------------------------------------------------------------------------|------------|
| 2008.6.3   | 1       | 1. D15-00-E-09 (before) → POE-D04-00-E-01 (1 <sup>st</sup> edition)                               |            |
| 2008.8.22  | 2       | Revised diameter                                                                                  | 5-7        |
|            |         | 2. Complete lead code                                                                             | 16-19      |
|            |         | 3. Add last SAP code "H" for halogen and Pb free, epoxy resin                                     | 8          |
| 2008.12.12 | 3       | 1.Complete lead code of SAP P/N                                                                   | 3-7        |
|            |         | 2. Page layout adjustment.                                                                        |            |
|            |         | 3. Added marking when the coating resin is Halogen and Pb free Epoxy.                             |            |
| 2009.8.5   | 4       | 1. Change PSA & POE logo to Walsin & POE logo.                                                    |            |
| 2011/8/24  | 5       | 1. Delete the definition about "Old Part No."                                                     | 5-6        |
|            |         | 2. Review the diameter dimension code of "Z5U 1KV 332/362" from 060 to be 070.                    | 7          |
|            |         | 3. Delete the Part No. of "Z5U 50V/100V 223".                                                     |            |
|            |         |                                                                                                   | 7          |
| 2011/11/25 | 6       | 1. Review the item Y5P/Z5U/Z5V                                                                    | 7-8        |
|            |         | 2. Add the Y5U temperature characteristic                                                         | 4-15       |
| 2012/11/06 | 7       | 1. Revise the temp.(TCC): Y5P(-25°C to 85°C/ to 125°C) & Cap. Change( $\pm 10\% / \pm 35\%$ )     | 4          |
|            |         | 2. Review the OP temp, for Y5P: Y5P: $-25^{\circ}$ C $\sim +105^{\circ}$ C (INCLUDING CAPACITOR'S | 12-13      |
|            |         | SELF-HEATING MAX.+20°C)                                                                           |            |
| 2013/5/6   | 8       | 1. Review the Lead diameter φ from 0.60 +/-0.06mm to 0.55+/-0.05mm                                | 6,9        |
|            |         | 2. Review the " $D\Phi \le 6.0$ mm shall be omitted." to " $D\Phi \le 0.0$ 0 shall be omitted."   | 8          |
|            |         | 3. Review the Solderability temperature from 255(+5/-0)°C to 245±5°C ., Solderability             |            |
|            |         | time from 2 $\pm 0.5$ s to $5\pm 0.5$ s,                                                          | 12         |
| 2013/10/18 | 9       | Review the packing specification                                                                  | 10         |
| 2015/8/4   | 10      | 1. Review the temperature range: Y5P(-25°C to+105°C)Change (-25°C to+125°C)                       | 11         |
|            |         | 2. review the high temperature loading: FOR $1000(+48/-0)$ HOURS AT $85 \pm 2^{\circ}$            | 13         |
|            |         | (FOR Y5U, Z5U, Z5V) / AT $105 \pm 3^{\circ}$ (ONLY FOR Y5P) AND THEN DRIED FOR                    |            |
|            |         | $12\sim24$ HOURS AND MEASURED.Change FOR $1000(+48/-0)$ HOURS AT $85\pm2^{\circ}$ C               |            |
|            |         | (FOR Y5U, Z5U, Z5V) / AT 125 $\pm$ 3°C (ONLY FOR Y5P) AND THEN DRIED FOR                          |            |
|            |         | $12\sim24$ HOURS AND MEASURED.                                                                    |            |
| 2015/11/5  | 11      |                                                                                                   | 5-6        |
| 2013/11/3  | 11      | 1. Review the Available lead code of Lead Configuration.                                          | 3-6<br>7-8 |
|            |         | 2. Modify the contents of the use of epoxy resin for 1KV products                                 | 12-13      |
|            |         | 3. Review the Specification and test method                                                       | 14         |
|            |         | 4. Review 8. Cautions & notices                                                                   | 16         |
|            |         | 5. Review 9. Drawing of internal structure and material list                                      | 10         |



POE-D04-00-E-11

Ver: 11 Page: 3 / 16

# **Table of Contents**

| No. | Item                                                  | Page        |
|-----|-------------------------------------------------------|-------------|
| 1   | Part number for SAP system                            | 4/16        |
| 2   | Mechanical                                            | 5/16~6/16   |
| 3   | Capacitance value vs. rated voltage, product diameter | 7/16~8/16   |
| 4   | Marking                                               | 8/16        |
| 5   | Taping Format                                         | 9/16        |
| 6   | Packing specification                                 | 10/16       |
| 7   | Specification and test method                         | 11/16~13/16 |
| 8   | Cautions & Notices                                    | 14/16~15/16 |
| 9   | Drawing of internal structure and material list:      | 16/16       |
|     |                                                       |             |
|     |                                                       |             |
|     | 新有意义                                                  |             |
|     | (A)                                                   |             |
|     |                                                       |             |
|     | # PSA P                                               |             |
|     | S S PASSIVE SYSTEM ALLIANCE S S                       |             |
|     | · · · · · · · · · · · · · · · · · · ·                 |             |
|     | Technology Corporation All Maries                     |             |



POE-D04-00-E-11

Ver: 11 Page: 4 / 16

1. Part number for SAP system(total eighteen code ):

• Temperature characteristic:

| Code              | YU(Y5U)        | YP(Y5P)                         | ZU(Z5U)   | ZV(Z5V)   |
|-------------------|----------------|---------------------------------|-----------|-----------|
| Temperature range | -25°C to +85°C | -25°C to +85°C / 85°C to +125°C | +10°C t   | o +85°C   |
| Cap. change       | -56%~+22%      | ±10% / ±35%                     | -56%~+22% | -82%~+22% |

2 Rated voltage (Vdc):

| Voltage | 50V | 100V | 500V | 1000V | 2000V |
|---------|-----|------|------|-------|-------|
| Code    | 500 | 101  | 501  | 102   | 202   |

**S**Capacitance(pF):

| 1 1 /           |     |     |      |      |      |
|-----------------|-----|-----|------|------|------|
| Capacitors (pF) | 100 | 470 | 1000 | 2200 | 4700 |
| Code            | 101 | 471 | 102  | 222  | 472  |

**4** Capacitance tolerance :  $K=\pm 10\%$  \  $M=\pm 20\%$  \ Z=+80% - 20%

**6** Nominal body diameter dimension (Ref.to page.7~8 Dφ Code spec.).

**6** Code of lead type: Please refer to Item "2.Mechanical".

Packing mode and lead's length (identified by 2-figure code)

| Taping Code | <b>Description</b>                |
|-------------|-----------------------------------|
| AN          | Ammo / Pitch of component:12.7 mm |
|             |                                   |

| Bulk Code | <b>Description</b>     |
|-----------|------------------------|
| 3E        | Lead's length L: 3.5mm |
| 04        | Lead's length L: 4.0mm |
| 4E        | Lead's length L: 4.5mm |
| 20        | Lead's length L: 20mm  |

SYSTEM ALLIANCE

8 Length tolerance

| Code | Description                                        |
|------|----------------------------------------------------|
| A    | ±0.5 mm(Only for short kink lead code "D / X / H") |
| В    | ±1.0 mm                                            |
| С    | Min.                                               |
| D    | Taping special purpose                             |

Pitch

| Code | Description                  | Code | Description |
|------|------------------------------|------|-------------|
| 5    | 5.0±0.8mm (For Bulk)         | 7    | 7.5 ±1 mm   |
| 5    | 5.0+0.8mm-0.2mm (For Taping) | 0    | 10.0 ±1mm   |
| 2    | 2.5 ±0.8 mm                  |      |             |

Coating code

| Code | Description                              |  |
|------|------------------------------------------|--|
| P    | Phenolic resin -Pb free                  |  |
| A    | Halogen free and Pb free, phenolic resin |  |
| В    | Epoxy Resin, Pb free                     |  |
| Н    | Halogen free and Pb free, epoxy resin    |  |



POE-D04-00-E-11

Ver: 11 Page: 5 / 16

#### 2. Mechanical:

Available lead code: (unit: mm)

| Available lea  | ad code: (unit: 1             |               | T 12 (2                             | A 91 1 1 4 7            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------|-------------------------------|---------------|-------------------------------------|-------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lead type      | <b>SAP P/N</b> (13-17) digits | Pitch<br>(F)  | Lead length<br>(L)                  | Available rated voltage | Packing   | Lead configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                | B20C2                         | $2.5 \pm 0.8$ | 20 MIN.                             | 50V                     |           | D max. T max.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                | B20C5                         | $5.0 \pm 0.8$ | 20 MIN.                             |                         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                | B20C6                         | $6.4 \pm 1.0$ | 20 MIN.                             |                         | Bulk      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Lead style: B  | B20C7                         | $7.5 \pm 1.0$ | 20 MIN.                             | 50V,500V, 1KV,2KV       |           | ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Straight long  | B20C0                         | 10 ± 1.0      | 20 MIN.                             |                         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| lead           | BAND5                         | 5.0 +0.8 -0.2 | Taping Spec.                        |                         | T. A      | * TF - T T T T T T T T T T T T T T T T T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                | BAND2                         | $2.5 \pm 0.8$ | (Ref.to page.9)                     | 50V                     | Tap. Ammo | Ø d L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                | L05B2                         | $2.5 \pm 0.8$ | 5.0 ± 1.0                           |                         |           | D max. T max.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                | L4EB5                         | $5.0 \pm 0.8$ | 4.5 ± 1.0                           |                         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                | L05B5                         | $5.0 \pm 0.8$ | $5.0 \pm 1.0$                       |                         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Lead style: L  | L05B6                         | $6.4 \pm 1.0$ | $5.0 \pm 1.0$                       |                         |           | ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Straight short | L4EB7                         | $7.5 \pm 1.0$ | $4.5 \pm 1.0$                       | 50V/500V/ 1EV/ 0EV/     | Bulk      | . \ \ \ \ \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| lead           | L05B7                         | $7.5 \pm 1.0$ | 5.0 ± 1.0                           | 50V,500V, 1KV, 2KV      |           | • + -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                | L4EB0                         | 10 ± 1.0      | 4.5 ± 1.0                           |                         |           | 1   F - T   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                | L05B0                         | 10 ± 1.0      | 5.0 ± 1.0                           | 自信                      |           | Ø d +   L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                | H3EA5                         | $5.0 \pm 0.8$ | $3.5 \pm 0.5$                       | R'S                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                | H04A5                         | 5.0 ± 0.8     | $4.0 \pm 0.5$                       | 份份太平                    | -1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                | H4EB5                         | $5.0 \pm 0.8$ | 4.5 ± 1.0                           | 习念                      | Tal       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                | H05B5                         | 5.0 ± 0.8/    | 5.0 ±1.0                            | F                       | 156       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                | H20C5                         | $5.0 \pm 0.8$ | 20 MIN.                             | $\nabla$                | E         | T may                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                | H3EA7                         | $7.5 \pm 1.0$ | $3.5 \pm 0.5$                       |                         |           | D max.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| T 1 . 1 . TT   | H04A7                         | $7.5 \pm 1.0$ | $4.0 \pm 0.5$                       |                         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Lead style: H  | H4EB7                         | $7.5 \pm 1.0$ | 4.5 <sub>A</sub> ± 1.0 <sub>E</sub> | 50V,500V, 1KV, 2KV      | Bulk      | ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Inside kink    | H05B7                         | $7.5 \pm 1.0$ | 5.0 ±1.0                            |                         |           | 1 × 1 ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| lead           | H20C7                         | 7.5 ± 1.0     | 20MIN                               | <u> </u>                |           | 5.0 max.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                | H3EA0                         | 10 ± 1.0      | $3.5 \pm 0.5$                       |                         | 24        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                | H04A0                         | 10 ± 1.0      | 4.0 ± 0.5                           | 970                     |           | [ ød+[+ <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                | H4EB0                         | 10 ± 1.0      | 4.5 ± 1.0                           | MODY COM                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                | H05B0                         | 10 ± 1.0      | 5.0 ±1.0                            | PARTICINI, HIS          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                | H20C0                         | 10 ± 1.0      | 20 MIN.                             | A COBBOKHIIA.           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                | HAND5                         | 5.0 +0.8 -0.2 | Taping SPEC. (Ref.to page.9)        | 50V,500V, 1KV, 2KV      | Tap. Ammo |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                | X3EA5                         | 5.0±0.8       |                                     |                         |           | ¥1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                | X3EA7                         | 7.5±1.0       | $3.5 \pm 0.5$                       |                         |           | D max.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                | X3EA0                         | 10±1.0        |                                     |                         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Lead style: X  | X04A5                         | 5.0±0.8       |                                     |                         |           | ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Outside kink   | X04A7                         | 7.5±1.0       | $4.0 \pm 0.5$                       | 50V,500V, 1KV, 2KV      | Bulk      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| lead           | X04A0                         | 10±1.0        | 1                                   |                         |           | i i i i i i i i i i i i i i i i i i i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                | X05B5                         | 5.0±0.8       |                                     |                         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                | X05B7                         | 7.5±1.0       | 5.0 ± 1.0                           |                         |           | "THE FOR THE PORT OF THE PORT |
|                | X05B0                         | 10±1.0        | 2.0 _ 1.0                           |                         |           | [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                | AUJDU                         | 10±1.0        |                                     |                         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |



POE-D04-00-E-11

Ver: 11 Page: 6 / 16

| Lead type     | SAP P/N<br>(13-17) digits | Pitch<br>(F)             | Lead length<br>(L)           | Available rated voltage | Packing      | Lead configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------|---------------------------|--------------------------|------------------------------|-------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | D04A5                     | 5.0±1.0                  |                              |                         |              | D max. ,T max,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|               | D04A7                     | 7.5±1.0                  | $4.0 \pm 0.5$                |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Lead style: D | D04A0                     | 10±1.0                   | 3.5 ± 0.5                    |                         | D.,11.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               | D3EA5                     | 5.0±0.8                  |                              | 50V,500V, 1KV, 2KV      | Bulk         | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Vertical kink | D3EA7                     | 7.5±1.0                  |                              |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| short lead    | D3EA0                     | 10±1.0                   |                              |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               | DAND5                     | 5.0 <sup>+0.8</sup> -0.2 | Taping SPEC. (Ref.to page.9) |                         | Tap.<br>Ammo |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               | M05B5                     | $5.0 \pm 0.8$            |                              |                         |              | D max. T max.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|               | M05B7                     | $7.5 \pm 1.0$            | $5.0 \pm 1.0$                |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Lead style: M | M05B0                     | $10 \pm 1.0$             |                              |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Double        | M04B5                     | $5.0 \pm 0.8$            |                              | 50V,500V, 1KV, 2KV      | Bulk         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| outside kink  | M04B7                     | 7.5 ± 1.0                | 5                            | 30 v,300 v, 1K v, 2K v  | Duik         | i de la companya de l |
| lead          | M04B0                     | 10 ± 1.0                 | 4.0 ± 1.0                    |                         |              | F Ø d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

 $<sup>\</sup>bigstar$  Lead diameter  $\phi$ = 0.55 +/-0.05 mm

#### **※ e** (Coating **extension** on leads):

For straight lead style: 1.5mmMax when the rated voltage is 50Vdc & 100Vdc;

2.0mmMax when the rated voltage is 500Vdc and 1KVdc;

3.0mmMax when the rated voltage is 2KVdc.

For kink lead style: not exceed the kink.

%When Dφ≥11mm, only for bulk, but Dφ≤10mm can do Bulk or Taping.



<sup>\*</sup> Phenolic resin coating for 50V/500V product; Phenolic resin or Epoxy resin coating for 1KV product; Epoxy resin coating for 2KV product.



POE-D04-00-E-11

Ver: 11 Page: 7 / 16

## 3. Capacitance value vs. rated voltage, product diameter:

| T.C.            |     |      |         |       |     | Y5  | P (C | LASS                | П,Т | <b>Tempe</b> | eratur                        | e:-25                 | ℃~+8 | 35℃,       | T.C.C      | ::±10 | % &                     | +85°C       | C~+12 | 25°C,′ | T.C.C | ::±35 | <b>%</b> ) |     |      |      |      |      |
|-----------------|-----|------|---------|-------|-----|-----|------|---------------------|-----|--------------|-------------------------------|-----------------------|------|------------|------------|-------|-------------------------|-------------|-------|--------|-------|-------|------------|-----|------|------|------|------|
| Rate<br>voltage |     |      | 50      | V, 10 | OV  |     |      |                     |     |              |                               | 500V                  |      |            |            |       |                         |             | 1 F   | ζV     |       |       |            |     | 2H   | ζV   |      |      |
| Dφ<br>(Code)    | 040 | 050  | 060     | 070   | 080 | 090 | 100  | 040                 | 050 | 060          | 070                           | 080                   | 090  | 100        | 110        | 130   | 050                     | 060         | 070   | 080    | 100   | 120   | 060        | 080 | 090  | 100  | 130  | 140  |
| D max.<br>(mm)  | 4.5 | 5.5  | 6.5     | 7.5   | 8.5 | 9.5 | 11.0 | 4.5                 | 5.5 | 6.5          | 7.5                           | 9.0                   | 10.0 | 11.0       | 12.0       | 14.0  | 6.0                     | 7.0         | 8.0   | 9.0    | 11.0  | 13.0  | 7.5        | 9.5 | 10.5 | 11.5 | 14.5 | 15.5 |
| T max.<br>(mm)  | 3.5 | 3.5  | 3.5     | 3.5   | 3.5 | 3.5 | 3.5  | 4.0                 | 4.0 | 4.0          | 4.0                           | 4.0                   | 4.0  | 4.0        | 4.0        | 4.0   | 4.5                     | 4.5         | 4.5   | 4.5    | 4.5   | 4.5   | 4.5        | 4.5 | 4.5  | 4.5  | 4.5  | 4.5  |
| 100             | 101 |      |         |       |     |     |      | 101                 |     |              |                               |                       |      |            |            |       | 101                     |             |       |        |       |       | 101        |     |      |      |      |      |
| 120             | 121 |      |         |       |     |     |      | 121                 |     |              |                               |                       |      |            |            |       | 121                     |             |       |        |       |       | 121        |     |      |      |      |      |
| 150             | 151 |      |         |       |     |     |      | 151                 |     |              |                               |                       |      |            |            |       | 151                     |             |       |        |       |       | 151        |     |      |      |      |      |
| 180             | 181 |      |         |       |     |     |      | 181                 |     |              |                               |                       |      |            |            |       | 181                     |             |       |        |       |       | 181        |     |      |      |      |      |
| 200             | 201 |      |         |       |     |     |      | 201                 |     |              |                               |                       |      |            |            |       | 201                     |             |       |        |       |       | 201        |     |      |      |      |      |
| 220             | 221 |      |         |       |     |     |      | 221                 |     |              |                               |                       |      |            |            |       | 221                     |             |       |        |       |       | 221        |     |      |      |      |      |
| 240             | 241 |      |         |       |     |     |      | 241                 |     |              |                               |                       |      |            |            |       | 241                     |             |       |        |       |       | 241        |     |      |      |      |      |
| 270             | 271 |      |         |       |     |     |      | 271                 |     |              |                               |                       |      |            |            |       | 271                     |             |       |        |       |       | 271        |     |      |      |      |      |
| 330             | 331 |      |         |       |     |     |      | 331                 |     |              |                               |                       |      |            |            |       | 331                     |             |       |        |       |       | 331        |     |      |      |      |      |
| 390             | 391 |      |         |       |     |     |      | 391                 |     |              |                               |                       |      |            |            |       | 391                     |             |       |        |       |       | 391        |     |      |      |      |      |
| 470             | 471 |      |         |       |     |     |      | 471                 |     |              |                               |                       |      |            |            |       | 471                     |             |       |        |       |       | 471        |     |      |      |      |      |
| 560             | 561 |      |         |       |     |     |      | 561                 |     |              |                               |                       |      |            |            |       | 561                     |             |       |        |       |       | 561        |     |      |      |      |      |
| 680             | 681 |      |         |       |     |     |      | 681                 |     |              |                               |                       |      |            |            |       |                         | 681         |       |        |       |       | 681        |     |      |      |      |      |
| 820             | 821 |      |         |       |     |     |      |                     | 821 |              |                               |                       |      |            |            |       |                         | 821         |       |        |       |       |            | 821 |      |      |      |      |
| 1000            | 102 |      |         |       |     |     |      |                     | 102 |              |                               |                       |      |            |            |       |                         | 102         |       |        |       |       |            | 102 |      |      |      |      |
| 1200            |     | 122  |         |       |     |     |      |                     |     | 122          |                               |                       |      |            |            |       |                         |             | 122   |        |       |       |            |     | 122  |      |      |      |
| 1500            |     | 152  |         |       |     |     |      |                     |     | 152          |                               |                       |      |            |            |       |                         |             | 152   |        |       |       |            |     | 152  |      |      |      |
| 1800            |     | 182  |         |       |     |     |      |                     |     |              | 182                           |                       | _    |            |            |       |                         |             |       | 182    |       |       |            |     | 182  |      |      |      |
| 2000            |     | 202  |         |       |     |     |      |                     |     |              | 202                           | 1.1                   | - 1  | _          |            | 1-    |                         |             |       | 202    |       |       |            |     | 202  |      |      |      |
| 2200            |     | 222  |         |       |     |     |      |                     |     |              | 222                           | FI                    | 7    | 7          |            | 70    |                         |             |       | 222    |       |       |            |     | 222  |      |      |      |
| 2700            |     |      | 272     |       |     |     |      |                     |     |              | VOS                           | 272                   |      |            |            | 1     | 13%                     | 5           |       |        | 272   |       |            |     |      | 272  |      |      |
| 3000            |     |      | 302     |       |     |     |      |                     |     | / 1          | TR                            | 302                   |      | J) L       | 1/1        |       | 12                      |             |       |        | 302   |       |            |     |      |      |      |      |
| 3300            |     |      | 332     |       |     |     |      |                     |     | NY           | 17                            | ( A                   | 332  | <b>1</b> X | IЛ         |       |                         | 5/          | 1     |        | 332   |       |            |     |      |      | 332  |      |
| 3900            |     |      |         | 392   |     |     |      |                     |     | N            | Y 1                           | ,                     | 392  |            |            | N.    | R                       | (J          | 7     |        |       | 392   |            |     |      |      | 392  |      |
| 4700            |     |      |         | 472   |     |     |      |                     | 14  | Vm           | 1.                            | $\mathbb{R}^{\prime}$ |      | 472        |            |       | 777                     |             | 17    |        |       | 472   |            |     |      |      |      | 472  |
| 5000            |     |      |         |       | 502 |     |      |                     | 177 | 1///         | 公公                            |                       |      | 502        |            |       | T.                      | <b>-</b> '\ | 70    |        |       |       |            |     |      |      |      |      |
| 5600            |     |      |         |       | 562 |     |      |                     | / * | 7 ,          | 10                            | 1                     |      | 562        |            |       |                         | 1           | -     |        |       |       |            |     |      |      |      |      |
| 6800            |     |      |         |       |     | 682 |      |                     |     | 1.0          | ti l                          |                       |      |            | 682        |       | 1                       | -11         |       |        |       |       |            |     |      |      |      |      |
| 8200            |     |      |         |       |     |     | 822  |                     |     | 1            | $H^{-1}$                      |                       |      |            |            | 822   |                         | 1           |       |        |       |       |            |     |      |      |      |      |
| 10000           |     |      |         |       |     |     | 103  |                     |     |              |                               |                       |      |            | <b>3</b> / | 103   |                         |             |       |        |       |       |            |     |      |      |      |      |
| Packing         |     | Tapi | ng or l | Bulk  | •   | BU  | LK   | Taping or Bulk Bulk |     |              | ılk                           | Taping or Bulk Bulk   |      |            |            |       | ulk Taping or Bulk Bulk |             |       |        |       |       |            |     |      |      |      |      |
| Coating         |     |      |         |       |     |     |      | henolic Resin       |     |              | Phenolic Resin or Epoxy Resin |                       |      |            |            |       |                         |             |       |        |       |       |            |     |      |      |      |      |
|                 |     |      |         |       |     |     |      |                     |     | -            |                               |                       |      |            |            |       |                         |             |       |        |       |       |            |     |      |      |      |      |

| T.C.         |     |     |      |      |     | 13      | Z5U  | (CLA | SS Ⅱ, | Temp  | eratur  | e: +10 | °C~+8   | 5℃, T.   | C. <b>C.:</b> - | +22~-5 | 56%) |     |       |       |      |      |
|--------------|-----|-----|------|------|-----|---------|------|------|-------|-------|---------|--------|---------|----------|-----------------|--------|------|-----|-------|-------|------|------|
| Rate voltage |     |     | 50V, | 100V |     | 13      | 2    | 4    | 500V  |       |         |        | 45      | 1KV      | 5               | /      |      |     | 2K    | V     |      |      |
| Dφ(Code)     | 040 | 050 | 060  | 070  | 080 | 100     | 040  | 050  | 060   | 070   | 090     | 050    | 060     | 070      | 090             | 100    | 060  | 070 | 080   | 090   | 110  | 130  |
| D max. (mm)  | 4.5 | 5.5 | 6.5  | 7.5  | 8.5 | 10.5    | 4.5  | 5.5  | 6.5   | 7.5   | 9.5     | 6.0    | 7.0     | 8.0      | 10.0            | 11.0   | 7.5  | 8.5 | 9.5   | 10.5  | 12.5 | 14.5 |
| T max. (mm)  | 3.5 | 3.5 | 3.5  | 3.5  | 3.5 | 3.5     | 4.0  | 4.0  | 4.0   | 4.0   | 4.0     | 4.5    | 4.5     | 4.5      | 4.5             | 4.5    | 4.5  | 4.5 | 4.5   | 4.5   | 4.5  | 4.5  |
| 1000         |     |     |      |      |     |         |      | 102  | 120   |       | чъ      | 102    | 100     | 214      |                 |        | 102  |     |       |       |      |      |
| 1200         |     |     |      |      |     |         |      | 122  | THAI  | 1100  | CAR     | 122    | 1 11100 |          |                 |        | 122  |     |       |       |      |      |
| 1500         |     |     |      |      |     |         |      | 152  | 2771  | 11/17 | THR     | 152    | 10      |          |                 |        |      | 152 |       |       |      |      |
| 1800         |     |     |      |      |     |         |      | 182  | -     | -001  | COL     | 182    |         |          |                 |        |      |     |       |       |      |      |
| 2000         | 202 |     |      |      |     |         |      | 202  |       |       |         | 202    |         |          |                 |        |      |     |       |       |      |      |
| 2200         | 222 |     |      |      |     |         |      | 222  |       |       |         | 222    |         |          |                 |        |      | 222 |       |       |      |      |
| 2700         | 272 |     |      |      |     |         |      | 272  |       |       |         |        |         | 272      |                 |        |      |     | 272   |       |      |      |
| 3000         | 302 |     |      |      |     |         |      |      |       |       |         |        |         | 302      |                 |        |      |     |       |       |      |      |
| 3300         | 332 |     |      |      |     |         |      |      | 332   |       |         |        |         | 332      |                 |        |      |     | 332   |       |      |      |
| 3600         | 362 |     |      |      |     |         |      |      | 362   |       |         |        |         | 362      |                 |        |      |     |       | 362   |      |      |
| 3900         | 392 |     |      |      |     |         |      |      | 392   |       |         |        |         | 392      |                 |        |      |     |       | 392   |      |      |
| 4700         | 472 |     |      |      |     |         |      |      |       | 472   |         |        |         | 472      |                 |        |      |     |       | 472   |      |      |
| 5000         |     | 502 |      |      |     |         |      |      |       |       |         |        |         | 502      |                 |        |      |     |       |       |      |      |
| 5600         |     |     |      |      |     |         |      |      |       | 562   |         |        |         |          |                 |        |      |     |       |       | 562  |      |
| 6800         |     |     |      |      |     |         |      |      |       | 682   |         |        |         |          | 682             |        |      |     |       |       | 682  |      |
| 8200         |     |     | 822  |      |     |         |      |      |       |       |         |        |         |          |                 | 822    |      |     |       |       |      | 822  |
| 10000        |     |     |      | 103  |     |         |      |      |       |       | 103     |        |         |          |                 | 103    |      |     |       |       |      | 103  |
| Packing      |     |     |      |      |     | -       |      |      |       | Tapi  | ng or B | ulk    | -       |          | -               |        |      |     |       |       | Bu   | ılk  |
| Coating      |     |     |      |      | Phe | nolic R | esin |      |       |       |         | Phen   | olic Re | sin or E | poxy R          | esin   |      |     | Epoxy | Resin |      |      |



POE-D04-00-E-11

Ver: 11 Page: 8 / 16

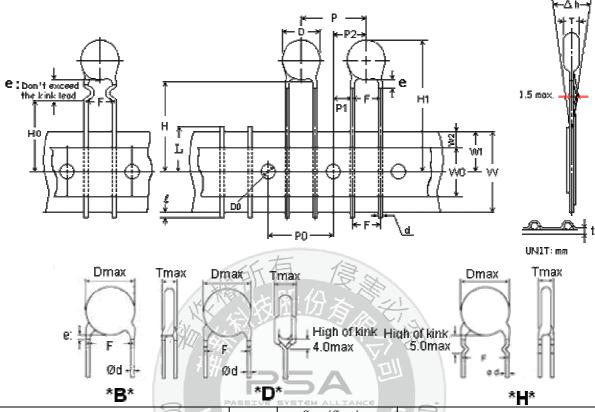
| T.C.         |     |     |        |     |         | Y        | <b>5U</b> (C | LASS    | ∏, Ten | nperatu | ıre: -25 | 5°C ~+8  | 5℃, T    | .C.C.:  | +22~-56 | <b>6%</b> )             |     |       |       |      |      |
|--------------|-----|-----|--------|-----|---------|----------|--------------|---------|--------|---------|----------|----------|----------|---------|---------|-------------------------|-----|-------|-------|------|------|
| Rate voltage |     | 50  | OV,100 | V   |         |          |              | 500V    |        |         |          |          | 1KV      |         |         |                         |     | 2F    | (V    |      |      |
| Dφ(Code)     | 050 | 060 | 070    | 080 | 100     | 060      | 070          | 080     | 090    | 100     | 050      | 060      | 070      | 090     | 110     | 060                     | 070 | 080   | 090   | 110  | 140  |
| D max. (mm)  | 5.5 | 6.5 | 7.5    | 8.5 | 10.5    | 6.5      | 7.5          | 8.5     | 9.5    | 10.5    | 6.0      | 7.0      | 8.0      | 10.0    | 12.0    | 7.5                     | 8.5 | 9.5   | 10.5  | 12.5 | 15.5 |
| T max. (mm)  | 3.5 | 3.5 | 3.5    | 3.5 | 3.5     | 4.0      | 4.0          | 4.0     | 4.0    | 4.0     | 4.5      | 4.5      | 4.5      | 4.5     | 4.5     | 4.5                     | 4.5 | 4.5   | 4.5   | 4.5  | 4.5  |
| 1000         |     |     |        |     |         | 102      |              |         |        |         | 102      |          |          |         |         | 102                     |     |       |       |      |      |
| 1200         |     |     |        |     |         |          |              |         |        |         | 122      |          |          |         |         | 122                     |     |       |       |      |      |
| 1500         |     |     |        |     |         |          |              |         |        |         | 152      |          |          |         |         |                         | 152 |       |       |      |      |
| 2000         | 202 |     |        |     |         |          |              |         |        |         |          |          |          |         |         |                         |     |       |       |      |      |
| 2200         | 222 |     |        |     |         | 222      |              |         |        |         |          | 222      |          |         |         |                         |     | 222   |       |      |      |
| 2700         | 272 |     |        |     |         |          | 272          |         |        |         |          |          | 272      |         |         |                         |     | 272   |       |      |      |
| 3000         | 302 |     |        |     |         |          |              |         |        |         |          |          |          |         |         |                         |     |       |       |      |      |
| 3300         | 332 |     |        |     |         |          | 332          |         |        |         |          |          | 332      |         |         |                         |     |       | 332   |      |      |
| 3600         | 362 |     |        |     |         |          |              |         |        |         |          |          |          |         |         |                         |     |       |       |      |      |
| 3900         | 392 |     |        |     |         |          | 392          |         |        |         |          |          | 392      |         |         |                         |     |       | 392   |      |      |
| 4700         | 472 |     |        |     |         |          |              | 472     |        |         |          |          |          | 472     |         |                         |     |       | 472   |      |      |
| 5000         | 502 |     |        |     |         |          |              |         |        |         |          |          |          |         |         |                         |     |       |       |      |      |
| 5600         |     |     |        |     |         |          |              |         |        |         |          |          |          |         |         |                         |     |       |       | 562  |      |
| 6800         |     |     |        |     |         |          |              |         | 682    |         |          |          |          | 682     |         |                         |     |       |       |      |      |
| 8200         |     |     | 822    |     |         |          |              |         |        |         |          |          |          |         |         |                         |     |       |       |      |      |
| 10000        |     |     | 103    |     |         |          |              |         |        | 103     | 03 103   |          |          |         |         |                         |     |       |       |      | 103  |
| Packing      |     | •   |        | •   | •       |          | Taping       | or Bull | K      |         | Bulk     |          |          |         |         | ulk Taping or Bulk Bulk |     |       |       |      |      |
| Coating      |     |     |        |     | Phenoli | ic Resin | ı            |         |        |         | Phe      | enolic R | lesin or | Epoxy : | Resin   |                         |     | Epoxy | Resin | •    |      |

|              |     |     |                | 13. K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1            | 3                  |                |       |             |
|--------------|-----|-----|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------|----------------|-------|-------------|
| T.C.         |     |     | Z5V (CLAS      | SS II , Tempera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ture: +10°C~ | +85℃, T.C.C.: +22~ | 82%)           |       |             |
| Rate voltage |     | 50V | /, 100V        | SEE THE RESERVE TO TH | 500V         | 1/1/23             | 1KV            |       | 2KV         |
| Dφ(Code)     | 050 | 060 | 070            | 080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 080          | 060                | 080            | 100   | 120         |
| D max. (mm)  | 5.5 | 6.5 | 7.5            | 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.0          | 7.0                | 9.0            | 11.0  | 13.5        |
| T max. (mm)  | 3.5 | 3.5 | 3.5            | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.0          | 4.5                | 4.5            | 4.5   | 4.5         |
| 1000         | 102 |     | 1777W/ ts      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | (7)                |                |       |             |
| 1200         | 122 |     | 44             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                    |                |       |             |
| 1500         | 152 |     | <b>1</b>       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 152                |                |       |             |
| 1800         | 182 |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 182                |                |       |             |
| 2000         | 202 |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 202                |                |       |             |
| 2200         | 222 |     | 8              | PASSIVE S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | YSTEM ALLI   | 222                | 5              |       |             |
| 2700         | 272 |     | 12             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 272                | -              |       |             |
| 3000         | 302 |     | 220            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 302                |                |       |             |
| 3300         | 332 |     | 95 0           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 2                  |                |       |             |
| 3600         | 362 |     |                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | (O) (K)            |                |       |             |
| 3900         | 392 |     | 1/1/2          | 1001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                    | 392            |       |             |
| 4700         | 472 |     | 3//            | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              | 11/41              | 472            |       |             |
| 5000         |     |     | 10/1           | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | INP!         | Oll Hir            | 502            |       |             |
| 10000        |     | 103 |                | CELHMOING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 103          | MI.                |                | 103   | 103         |
| 20000        |     |     | 203            | 110100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LUMPUM       |                    |                |       |             |
| 22000        |     |     |                | 223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                    |                |       |             |
| Packing      |     |     | •              | Taping or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bulk         |                    | <u>"</u>       |       | Bulk        |
| Coating      |     |     | Phenolic Resin |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | Phenolic Res       | sin or Epoxy I | Resin | Epoxy Resin |

4. Marking:

| Marking Remarks                    | (2) B (1) (4) (4) (5) (6)                                                                         |  |  |  |  |  |
|------------------------------------|---------------------------------------------------------------------------------------------------|--|--|--|--|--|
| (1). Temp. char.                   | Y5P: Be marked "B"; Z5U(Y5U): Be marked "E"; Z5V: Shall be omitted                                |  |  |  |  |  |
| (2). Rated capacitance             | Identified by 3-Figure Code. Ex. 1000pF→"102", 4700pF→"472"                                       |  |  |  |  |  |
|                                    | 50V&100V Marked with code "" under the rated capacitance.                                         |  |  |  |  |  |
| (3). Rated voltage                 | No any marking under the rated capacitance.                                                       |  |  |  |  |  |
|                                    | 1000V&2000V Marked with code: 1000V→"1KV", 2000V→"2KV"                                            |  |  |  |  |  |
| (4). Capacitance tolerance         | $K=\pm 10\%$ (for Y5P) $M=\pm 20\%$ (for Z5U&Y5U) $Z=+80\%-20\%$ (for Z5V)                        |  |  |  |  |  |
| (5). Manufacturer's identification | on Shall be marked as "♥", but DΦ≤060 shall be omitted.                                           |  |  |  |  |  |
| (6). Halogen and Pb free           | There is a ""marking under the code "V" when the coating resin is Halogen free and Pb free Epoxy. |  |  |  |  |  |



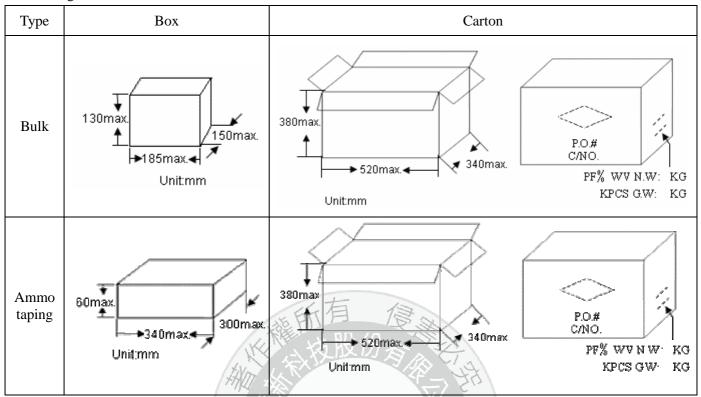

POE-D04-00-E-11

Ver: 11 Page: 9 / 16

# **5. Taping specifications:**

\* Lead spacing: **F**=5.0 <sup>+0.8</sup><sub>-0.2</sub> (**mm**)

• 12.7mm pitch/lead spacing 5.0mm taping
Lead code: \*BAND5 & \*DAND5 & \*HAND5




|                                 |                        | -ABBIVE | 5 7 5 I EM 7    | ALLIANCE                                | • •                                             |
|---------------------------------|------------------------|---------|-----------------|-----------------------------------------|-------------------------------------------------|
| Item                            | 9 5                    | Symbol  | Spec            | cification                              | Remarks                                         |
| Item                            | 多包                     | Symbol  | Value           | Tolerance                               | Kemarks                                         |
| Body diameter                   | 35 05                  | D       | *               | max.                                    | See Section "3. Capacitance value vs. rated     |
| Body thickness                  | 0,4                    | T       | *               | max.                                    | voltage, product diameter".                     |
| Lead-wire diameter              | Mar                    | d       | 0.55            | ±0.05                                   | 57                                              |
| Pitch of component              | 12/5/11                | P       | 12.7            | ±1.0                                    |                                                 |
| Feed hole pitch                 |                        | // P0   | 12.7            | ±0.3                                    | Cumulative pitch erroe:1.0mm/20 pitch           |
| Feed hole center to lead        |                        | ·/P1/// | 3.85            | ±0.7                                    | To be measured at bottom of clinch              |
| Hole center to component center |                        | P2      | 6.35            | ±1.3                                    |                                                 |
| Lead-to-lead distance           |                        | F       | 5.0             | +0.8,-0.2                               |                                                 |
| Component alignment, F-R        |                        | ∆h      | 0               | ±2.0                                    |                                                 |
| Tape width                      |                        | W       | 18.0            | +1.0,-0.5                               |                                                 |
| Hole-down tape width            |                        | W0      | 11.0            | min.                                    |                                                 |
| Hole position                   |                        | W1      | 9.0             | +0.75,-0.5                              |                                                 |
| Hole-down tape position         |                        | W2      | 3.0             | max.                                    |                                                 |
| Height of component form tape   | For straight lead type | Н       | 20.0            | +1.0 -0.5                               |                                                 |
| center                          | For kinked lead type   | H0      | 16.0            | ±0.5                                    |                                                 |
| Component height                |                        | H1      | 32.25           | max.                                    |                                                 |
| Lead-wire protrusion            |                        | Q       | 2.0             | max.                                    | Or the end of lead wire may be inside the tape. |
| Food hole diameter              |                        | DÔ      | 4.0             | ±0.2                                    |                                                 |
| Total tape thickness            | •                      |         |                 | ±0.2                                    | Ground paper:0.5±0.1mm                          |
| Length of sniped lead           | <u> </u>               | L       | 11.0            | max.                                    |                                                 |
| Coating rundown on leads        | e                      |         | Please refer to | page 6 "e(Coating extension on leads)". |                                                 |



### 6. Packing Baggage:

#### 6.1 Packing size:



## 6.2 Packing quantity:

| Packing type    | Th                        | ne code of 14th to15th<br>in SAP P/N | STEM ALLIMPQ (Kpcs/ | Box)     | Remark         |
|-----------------|---------------------------|--------------------------------------|---------------------|----------|----------------|
| Toning          |                           | AN                                   | 2.5                 |          | Phenolic resin |
| Taping          |                           | AN                                   | 1.5                 |          | Epoxy resin    |
| Packing<br>type | Lead<br>length            | Size code of 10th to 12th in SAP P/N | MPQ (Kpcs/Bag)      | Kpcs/Box | Remark         |
|                 |                           | 040~070                              | 1                   | 3        | Phenolic resin |
|                 |                           | 080~100                              | 1                   | 2        | Phenolic resin |
|                 | Long lead<br>(L≧<br>16mm) | 050~100                              | 1                   | 2        | Epoxy resin    |
| D II            |                           | 110~120                              | 0.5                 | 1.5      |                |
| Bulk            |                           | 130~140                              | 0.5                 | 1        |                |
|                 |                           | 040~060                              | 1                   | 6        |                |
|                 | Short lead                | 070~080                              | 1                   | 4        |                |
|                 | (L < 16mm)                | 090~100                              | 1                   | 3        |                |
|                 | ,                         | 110~140                              | 1                   | 2        |                |



|                                                                         |                 | Ver: 11    |
|-------------------------------------------------------------------------|-----------------|------------|
| 50V,100V,500V,1KV,2KV Hi-K CERAMIC DISC CAPACITOR FOR DOWN SIZE PRODUCT | POE-D04-00-E-11 | Page: 11 / |
|                                                                         |                 | 16         |

#### 7. Specification and test method:

7.1 SCOPE: THIS SPECIFICATION APPLIES TO HI-K CERAMIC TYPE CAPACITOR.

#### 7.2 TEST CONDITIONS:

UNLESS OTHERWISE SPECIFIED, ALL TESTS SHALL BE OPERATED AT THE STANDARD TEST CONDITIONS OF TEMPERATURE 5°C TO 35°C AND RELATIVE HUMIDITY 45% TO 85%. WHEN FAILS A TEST, RETEST BE OPERATED AT THE CONDITIONS OF TEMPERATURE 25°C  $\pm$  2°C, RELATIVE HUMIDITY OF 60% TO 70% AND BAROMETRIC PRESSURE 860 TO 1060 MBAR.

7.3 HANDLE PROCEDURE: TO AVOID UNEXPECTED TESTING RESULTS FROM OCCURRING, THE TESTED CAPACITOR MUST BE KEPT AT ROOM TEMPERATURE FOR AT LEAST 30 MINUTES AND COMPLETELY DISCHARGED.

#### 7.4 TEST ITEMS ·

| 7.4 TEST ITEMS :                  | T                                                                                                                                                              | THE CENTRAL PROCEDURE                                                                                                                                          |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ITEM                              | POST-TEST REQUIREMENTS                                                                                                                                         | TESTING PROCEDURE                                                                                                                                              |
| APPEARANCE<br>STRUCTURE<br>SIZE   | NO ABNORMALITIES                                                                                                                                               | AS STATED IN SECTION 3.                                                                                                                                        |
| MARKING                           |                                                                                                                                                                | AS STATED IN SECTION 4                                                                                                                                         |
|                                   | BETWEEN TERMINALS:<br>NO ABNORMALITIES                                                                                                                         | A. BELOW 1KV: 250% RATED VOLTAGE WITH 50mA MAX. CHARGING CURRENT FOR 1~5 SEC.  B. 1KV & ABOVE: 200% RATED VOLTAGE WITH 50mA MAX. CHARGING CURRENT FOR 1~5 SEC. |
| WITHSTAND<br>VOLTAGE              | BETWEEN TERMINAL AND                                                                                                                                           | SMALL METALLIC BALLS WITH 1mm DIAMETERS SHALL BE PUT ON A VESSEL AND THE TEST CAPACITOR SHALL BE SUBMERGED EXCEPT 2mm FROM THE TOP OF ITS COMPONENT BODY.      |
|                                   | ENCLOSURE: NO ABNORMALITIES                                                                                                                                    | THE TEST VOLTAGE SHALL BE APPLIED BETWEEN THE SHORT-CIRCUITED TERMINALS AND THE METALLIC BALLS.                                                                |
|                                   |                                                                                                                                                                | (APPLY 1.3KV DC VOLTAGE BETWEEN TERMINALS AND ENCLOSURE FOR $1\sim5$ SEC)                                                                                      |
| INSULATION<br>RESISTANCE          | 10000 ΜΩ ΜΙΝ                                                                                                                                                   | INSULATION RESISTANCE SHALL BE MEASURED AT 60±5 SECONDS AFTER RATED VOLTAGE APPLIED.  RATED VOLTAGE: 100V = 100V                                               |
|                                   |                                                                                                                                                                | 500V & ABOVE = 500V                                                                                                                                            |
| CAPACITANCE                       | TOLERANCE :<br>K : ±10% M : ±20%                                                                                                                               | TESTING FREQUENCY: 1 KHZ ± 20% TESTING TEMPERATURE: 25 ± 2°C                                                                                                   |
| erm rerm vez                      | Z: +80-20%                                                                                                                                                     | TESTING VOLTAGE: 1.0~5.0 Vrms                                                                                                                                  |
| OPERATING<br>TEMPERATURE<br>RANGE | Y5P: $-25^{\circ}$ C $\sim +125^{\circ}$ C<br>Y5U: $-25^{\circ}$ C $\sim +85^{\circ}$ C<br>Z5U & Z5V: $+10^{\circ}$ C $\sim +85^{\circ}$ C                     |                                                                                                                                                                |
| TEMPERATURE<br>RANGE              | Y5P: $-25^{\circ}$ C $\sim$ +125 $^{\circ}$ C (INCLUDII<br>Y5U: $-25^{\circ}$ C $\sim$ +85 $^{\circ}$ C<br>Z5U & Z5V: +10 $^{\circ}$ C $\sim$ +85 $^{\circ}$ C | NG CAPACITOR'S SELF-HEATING MAX.+20°C)                                                                                                                         |
| DISSIPATION<br>FACTOR<br>( D.F )  | Y5P : BELOW 2.5%<br>Z5U & Y5U : BELOW 2.5%<br>Z5V : BELOW 5.0%                                                                                                 | AS ABOVE STIPULATION OF CAPACITANCE                                                                                                                            |



POE-D04-00-E-11

Ver: 11 Page: 12 / 16

| YENYIN E                                            | DOGE DEGE DEGLES STATES                                                                                                                                                                | MEGERNA PRO OFFICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ITEM                                                | POST-TEST REQUIREMENTS                                                                                                                                                                 | TESTING PROCEDURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| TEMPERATURE<br>CHARACTERISTIC                       | CAP. CHANGE:<br>Y5P: WITHIN ± 10%(-25°C to<br>+85°C) & WITHIN ±<br>35%(85°C to +125°C)<br>Z5U & Y5U: WITHIN -56,+22%<br>Z5V: WITHIN -82,+22%                                           | CAPACITANCE SHALL BE MEASURED AT 25°C. AND CLASSIFIED AS CAP. CHANGE: CLASS Y5P: -25°C ~ +125°C CLASS Y5U: -25°C ~ +85°C CLASS Z5U&Z5V: +10°C ~ +85°C Pre-treatment: Capacitor shall be stored at125±3°C for 1hour.then placed at 100000000000000000000000000000000000                                                                                                                                                                                                                                                                                |
| TERMINAL                                            | TENSILE STRENGTH :<br>NO BREAKDOWN                                                                                                                                                     | WIRE DIA.0.5 M/M, LOADING WEIGHT 0.5KG<br>FOR 10±1 SECONDS<br>WIRE DIA.0.6 M/M, LOADING WEIGHT 1.0KG<br>FOR 10±1 SECONDS                                                                                                                                                                                                                                                                                                                                                                                                                              |
| STRENGTH                                            | BENDING STRENGTH :<br>NO BREAKDOWN                                                                                                                                                     | WIRE DIA.0.5 M/M, LOADING WEIGHT 0.25 KG<br>WIRE DIA.0.6 M/M, LOADING WEIGHT 0.5 KG<br>(BENDING BACK AND FORTH 90 DEGREE TWICE)                                                                                                                                                                                                                                                                                                                                                                                                                       |
| SOLDERABILITY                                       | LEAD WIRE SHALL BE<br>SOLDERED OVER 3/4 OF THE<br>CIRCUMFERENTIAL<br>DIRECTION.                                                                                                        | TO COMPLY WITH JIS-C-5102 8.4 SOLDER TEMPERATURE 245±5°C AND DIPPING TIME 5±0.5 SECONDS. FLUX: WEIGHT RATIO OF POSIN 25%                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SOLDERING HEAT<br>RESISTANCE                        | APPEARANCE: NO ABNORMALITIES  CAP. CHANGE: Y5P: ±5% MAX Z5U & Y5U: ±15% MAX Z5V: ±20%  WITHSTAND VOLTAGE: (BETWEEN TERMINALS) NO ABNORMALITIES                                         | LEAD WIRE OR TERMINALS SHALL IMMERSE UP TO 2.0 M/M FORM BODY.  (A) BODY DIA. ≤ 5.0mm: INTO THE MOLTEN SOLDER OF WHICH TEMPERAFURE: 260(+5/-0)°C FOR 3.0±0.5 SECONDS.  (B) BODY DIA. > 5.0mm: INTO THE MOLTEN SOLDER OF WHICH TEMPERATURE 260(+5/-0)°C FOR 5~10 SECONDS.  THEN LEAVE AT STANDARD TEST CONDITIONS FOR 24±2 HOURS, THEN MEASURED.  ※WHEN SOLDERING CAPACITOR WITH A SOLDERING IRON, IT SHOULD BE PERFORMED IN FOLLOWING CONDITIONS.  TEMPERATURE OF IRON-TIP: 350~400 °C SOLDERING IRON WATTAGE: 50W MAX.  SOLDERING TIME: 3.5 SEC. MAX. |
| HUMIDITY<br>CHARACTERISTIC<br>(STABLE<br>SITUATION) | APPEARANCE: NO ABNORMALITIES  CAP. CHANGE: Y5P: ± 15% MAX Z5U & Y5U: ± 20% MAX Z5V: ± 30% MAX  D.F. Y5P: 5% MAX Z5U & Y5U: 5% MAX Z5U & Y5U: 5% MAX INSULATION RESISTANCE: 1000ΜΩ MIN. | CAPACITORS SHALL BE SUBJECTED TO A RELATIVE HUMIDITY OF 90 $\sim$ 95% AT 40±2°C FOR 500(+24/-0) HOURS. THEN DRIED FOR 1 $\sim$ 2 HOURS AND MEASURED.                                                                                                                                                                                                                                                                                                                                                                                                  |

<sup>\*1&</sup>quot;room condition" Temperature:15~35, Relative humidity: 45~75%, Atmospheric pressure:86~106kPa



POE-D04-00-E-11

Ver: 11 Page: 13 / 16

| ITEM        | POST-TEST REQUIREMENTS  | TESTING PROCEDURE                                                                                    |
|-------------|-------------------------|------------------------------------------------------------------------------------------------------|
|             | APPEARANCE:             | CAPACITORS SHALL BE SUBJECTED TO A RELATIVE                                                          |
|             | NO ABNORAMLITIES        | HUMIDITY OF 90 $\sim$ 95% AT 40 ± 2°C FOR 500(+24/-0)                                                |
|             | CAP. CHANGE :           | HOURS WITH RATED VOLTAGE APPLIED WITH 50mA                                                           |
|             | Y5P: ±15% MAX           | MAX., THEN DRIED FOR $1\sim2$ HOURS AND MEASURED.                                                    |
|             | Z5U & Y5U: ±20% MAX     | Pre-treatment:                                                                                       |
| HUMIDITY    | Z5V: ±30% MAX           | Capacitor shall be stored at125±3°C for 1hour.then placed at                                         |
| LOADING     | D.F.                    | 1room condition for 24±2hours                                                                        |
|             | Y5P: 5% MAX             |                                                                                                      |
|             | Z5U & Y5U : 5% MAX      |                                                                                                      |
|             | Z5V: 7.5% MAX           |                                                                                                      |
|             | INSULATION RESISTANCE   |                                                                                                      |
|             | 500 MΩ MIN.             |                                                                                                      |
|             | APPEARANCE:             | CAPACITORS SHALL BE SUBJECTED TO A TEST OF                                                           |
|             | NO ABNORMALITIES        | (A) BELOW 1KV: 200% RATED VOLTAGE WITH 50mA                                                          |
|             | CAP. CHANGE :           | MAX.                                                                                                 |
|             | Y5P: ±15% MAX           | (B) 1KV & ABOVE: 150% RATED VOLTAGE WITH 50mA                                                        |
|             | Z5U & Y5U: ±20% MAX     | MAX.                                                                                                 |
| HIGH        | Z5V: ±30% MAX           | FOR 1000(+48/-0) HOURS AT 85 $\pm$ 2°C (FOR Y5U, Z5U,                                                |
| TEMPERATURE | D.F.                    | Z5V) / AT 125 $\pm$ 3°C (ONLY FOR Y5P) AND THEN DRIED                                                |
| LOADING     | Y5P: 4% MAX             | FOR 12~24 HOURS AND MEASURED.                                                                        |
|             | Z5U & Y5U: 4% MAX       | Pre-treatment:                                                                                       |
|             | Z5V : 7.5% MAX          | Capacitor shall be stored at 125±3°C for 1hour.then placed at ¾                                      |
|             | INSULATION RESISTANCE : | 1room condition for 24±2hours                                                                        |
|             | 1000 MΩ MIN.            | Pology Corp. The                                                                                     |
|             | APPEARANCE:             | CAPACITORS SHALL BE SUBJECTED TO:                                                                    |
|             | NO ABNORMALITIES        | $-25\pm3^{\circ}$ C (30±3min) $\rightarrow$ 25°C (3min) $\rightarrow$ 85±3°C (30±3min) $\rightarrow$ |
|             | CAP. CHANGE :           | 25°C (3min) FOR 5 CYCLE.                                                                             |
|             | Y5P: ±15% MAX           | Pre-treatment:                                                                                       |
|             | Z5U & Y5U: ±20% MAX     | Capacitor shall be stored at125±3°C for 1hour.then placed at                                         |
| TEMPERATURE | Z5V: ±30% MAX           | 1room condition for 24±2hours                                                                        |
| CYCLING     | D.F.                    |                                                                                                      |
|             | Y5P: 5% MAX             |                                                                                                      |
|             | Z5U & Y5U: 5% MAX       |                                                                                                      |
|             | Z5V : 7.5% MAX          |                                                                                                      |
|             | INSULATION RESISTANCE : |                                                                                                      |
|             | 1000 MΩ MIN.            |                                                                                                      |

¾ 1"room condition" Temperature:15~35, Relative humidity: 45~75%, Atmospheric pressure:86~106kPa



|                                                                         |                 | Ver: 11    |
|-------------------------------------------------------------------------|-----------------|------------|
| 50V,100V,500V,1KV,2KV Hi-K CERAMIC DISC CAPACITOR FOR DOWN SIZE PRODUCT | POE-D04-00-E-11 | Page: 14 / |
|                                                                         |                 | 16         |

#### 8. Cautions & notices:

**\*Application:** DC or Low frequency(30~150Hz) High Voltage circuits. As coupling and decoupling capacitors for such application where higher losses and a reduced.

#### 8.1. Caution (Rating)

#### I. Operating Voltage

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range.

When the voltage is applied to the circuit, starting or stopping may generate irregular voltage for a transit period because of resonance or switching. Be sure to use a capacitor with a rated voltage range that includes these irregular voltages.

| Voltage                   | DC Voltage | DC+AC Voltage     | AC Voltage | Pulse Voltage (1) | Pulse Voltage (2) |
|---------------------------|------------|-------------------|------------|-------------------|-------------------|
| Positional<br>measurement | Vo-p       | V <sub>0</sub> -p | Vp-p       | Vp-p              | Vp-p              |

#### II. Operating Temperature and Self-generated Heat

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself. When the capacitor is used in a high frequency current, pulse current or similar current, it may self-generate heat due to dielectric loss. The frequency of the applied sine wave voltage should be less than 150Hz. The applied voltage load (\*) should be such that the capacitor's self-generated heat is within 20°C at an atmosphere temperature of 25°C. When measuring, use a thermocouple of small thermal capacity-K of ø0.1mm in conditions where the capacitor is not affected by radiant heat from other components or surrounding ambient fluctuations.

Excessive heat may lead to deterioration of the capacitor's characteristics and reliability. (Never attempt to perform

Excessive heat may lead to deterioration of the capacitor's characteristics and reliability. (Never attempt to perform measurement with the cooling fan running. Otherwise, accurate measurement cannot be ensured.)

#### III. Fail-Safe

When capacitor is broken, failure may result in a short circuit. Be sure to provide an appropriate fail-safe function like a fuse on your product if failure would follow an electric shock, fire or fume.

#### 8.2. Caution (Storage and operating condition)

#### I. Operating and storage environment

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed –10 to 40 degrees centigrade and 15 to 85 % for 6 months maximum and use within the period after receiving the capacitors.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.



|                                                                         |                 | Ver: 11    |
|-------------------------------------------------------------------------|-----------------|------------|
| 50V,100V,500V,1KV,2KV Hi-K CERAMIC DISC CAPACITOR FOR DOWN SIZE PRODUCT | POE-D04-00-E-11 | Page: 15 / |
|                                                                         |                 | 16         |

#### **8.3.**Caution (Soldering and Mounting)

#### I. Vibration and impact

Do not expose a capacitor or its leads to excessive shock or vibration during use.

#### II. Soldering

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor.

Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element. When soldering capacitor with a soldering iron, it should be performed in following conditions.

Temperature of iron-tip: 400 degrees C. max.

Soldering iron wattage: 50W max.

Soldering time: 3.5 sec. max.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

#### 8.4. Caution (Handling)

Vibration and impact

Do not expose a capacitor or its leads to excessive shock or vibration during use.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PROUCT IS USED.

#### 8.5. Notice

8.5.1. Notice (Soldering and Mounting)

Cleaning (ultrasonic cleaning)

To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity: Output of 20 watts per liter or less.

Rinsing time: 5 min. maximum.

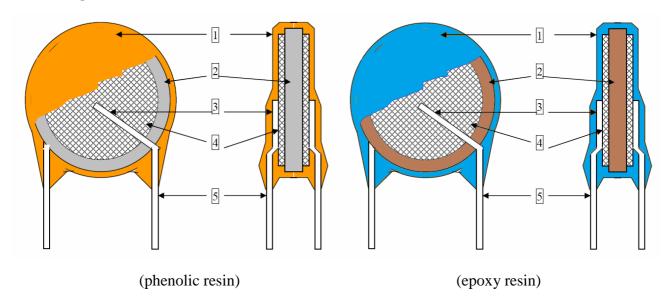
Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

#### 8.5.2. Notice (Rating)

Capacitance change of capacitor

#### Class 2 series:


Capacitors have an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor is left on for a long time. Moreover, capacitance might change greatly depending on the surrounding temperature or an applied voltage. So, it is not likely to be suitable for use in a time constant circuit.

Please contact us if you need detailed information.



|                                                                         |                 | Ver: 11    |
|-------------------------------------------------------------------------|-----------------|------------|
| 50V,100V,500V,1KV,2KV Hi-K CERAMIC DISC CAPACITOR FOR DOWN SIZE PRODUCT | POE-D04-00-E-11 | Page: 16 / |
|                                                                         |                 | 16         |

## 9. Drawing of internal structure and material list:



|               | 新有稳                |                 |                                 |               |  |  |
|---------------|--------------------|-----------------|---------------------------------|---------------|--|--|
| NO.           | 部位                 | 材質              | 構成部份                            | 供應商           |  |  |
|               | Part name          | Material        | 5 Component                     | Vendor        |  |  |
| 1             | Insulation Coating | Phenolic resin  | Phenolic resin, Filler, Pigment | Namics        |  |  |
|               |                    | Epoxy resin     | Epoxy resin, SiO2, TiO2         | Kai Hua       |  |  |
|               |                    |                 | דוו                             | Hua Xing      |  |  |
| 2             | Dielectric Element | Ceramic         | BaTiO3                          | Wang Feng     |  |  |
|               |                    | PASSI           | VE SYSTEM ALLIANCE              | Fenghua       |  |  |
| 3             | Solder             | Tin-silver      | Sn97.5-Ag2.5                    | Huajun        |  |  |
|               |                    | 1411-5117C1     | Sil)1.3-Ag2.3                   | Haili         |  |  |
| 4             | Electrodes         |                 | Silver, Glass frit              | Daejoo        |  |  |
|               |                    | Ag              |                                 | Xinguang      |  |  |
| 5             | Leads wire         | Tinned copper   | Substrate metal:Fe&Cu           | Hengtai       |  |  |
|               |                    | clad steel wire | Surface plating:Sn 100%         | Wuhu Taililai |  |  |
| TOZOGY CURPON |                    |                 |                                 |               |  |  |