
# LINEAR SYSTEMS

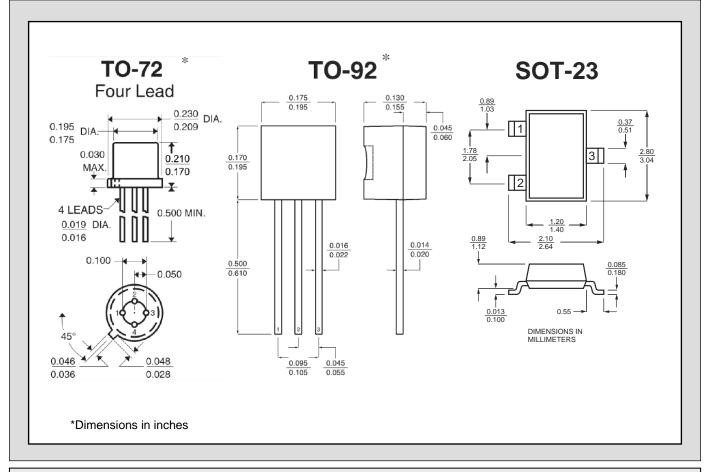
### Twenty-Five Years Of Quality Through Innovation

| FEATURES                                       |                |  |  |  |  |
|------------------------------------------------|----------------|--|--|--|--|
| Replacement For SILICONIX 2N/SST4416 & 2N4416A |                |  |  |  |  |
| VERY LOW NOISE FIGURE (400 MHz)                | 4 dB           |  |  |  |  |
| EXCEPTIONAL GAIN (400 MHz)                     | 10 dB          |  |  |  |  |
| ABSOLUTE MAXIMUM RATINGS <sup>1</sup>          |                |  |  |  |  |
| @ 25 °C (unless otherwise stated)              |                |  |  |  |  |
| Maximum Temperatures                           |                |  |  |  |  |
| Storage Temperature                            | -55 to +150 °C |  |  |  |  |
| Operating Junction Temperature                 | -55 to +135 °C |  |  |  |  |
| Maximum Power Dissipation                      |                |  |  |  |  |
| Continuous Power Dissipation                   | 300mW          |  |  |  |  |
| Maximum Currents                               |                |  |  |  |  |
| Gate Current                                   | 10mA           |  |  |  |  |
| Maximum Voltages                               |                |  |  |  |  |
| Gate to Drain or Gate to Source 2N4416         | -30V           |  |  |  |  |
| Gate to Drain or Gate to Source 2N4416A        | -35V           |  |  |  |  |

# 2N/PN SST4416 2N4416A

#### N-CHANNEL JFET HIGH FREQUENCY AMPLIFIER




\*Optional Package For 2N4416

#### ELECTRICAL CHARACTERISTICS @ 25 °C (unless otherwise stated)

| SYMBOL            | CHARACTERISTIC                            |               |       |      | TYP  | MAX  | UNITS                                                         | CONDITIONS                                             |
|-------------------|-------------------------------------------|---------------|-------|------|------|------|---------------------------------------------------------------|--------------------------------------------------------|
| BV <sub>GSS</sub> | Gate to Source                            | 2N/PN/SST4416 |       | -30  |      |      | v                                                             | $I_G = -1\mu A, V_{DS} = 0V$                           |
|                   | Breakdown Voltage                         | 2N4416A       |       | -35  |      |      |                                                               |                                                        |
| Vcc(e#)           | Gate to Source                            | 2N/PN/SST4416 |       |      |      | -6   |                                                               |                                                        |
|                   | Cutoff Voltage                            | 2N            | 4416A | -2.5 |      | -6   |                                                               | $V_{DS} = 15V, I_D = 1nA$                              |
| I <sub>DSS</sub>  | Gate to Source Saturation Current         |               |       | 5    |      | 15   | mA                                                            | $V_{DS} = 15V, V_{GS} = 0V$                            |
| I <sub>GSS</sub>  | Gate Leakage Current 2N<br>PN/SST         |               |       |      | -0.1 | nA   | $V_{GS} = -20V, V_{DS} = 0V$                                  |                                                        |
|                   |                                           |               |       |      | -1.0 |      | $V_{GS} = -15V, V_{DS} = 0V$                                  |                                                        |
| <b>g</b> fs       | Forward Transconductance                  |               |       | 4000 |      | 7500 |                                                               | $V_{DS} = 15V. V_{GS} = 0V. f = 1kHz$                  |
| g <sub>os</sub>   | Output Conductance                        |               |       |      |      | 100  | $\mu$ S V <sub>DS</sub> = 15V, V <sub>GS</sub> = 0V, $f$ = 1k | $v_{\rm DS} = 15v, v_{\rm GS} = 0v, t = 1 \text{ kHz}$ |
| Ciss              | Input Capacitance <sup>2</sup>            |               |       |      |      | 0.8  |                                                               |                                                        |
| C <sub>rss</sub>  | Reverse Transfer Capacitance <sup>2</sup> |               |       |      |      | 4    | pF                                                            | $V_{DS} = 15V$ , $V_{GS} = 0V$ , $f = 1MHz$            |
| C <sub>oss</sub>  | Output Capacitance <sup>2</sup>           |               |       |      |      | 2    |                                                               |                                                        |
| en                | Equivalent Input Noise Voltage            |               |       |      | 6    |      | nV/√Hz                                                        | $V_{DS} = 10V, V_{GS} = 0V, f = 1kHz$                  |

| SYMBOL           | CHARACTERISTIC                        | 100 MHz |      | 400 MHz |       | UNITS | CONDITIONS                                       |  |
|------------------|---------------------------------------|---------|------|---------|-------|-------|--------------------------------------------------|--|
|                  |                                       | MIN     | MAX  | MIN     | MAX   |       | CONDITIONS                                       |  |
| g <sub>iss</sub> | Input Conductance <sup>2</sup>        |         | 100  |         | 1000  |       |                                                  |  |
| b <sub>iss</sub> | Input Susceptance <sup>2</sup>        |         | 2500 |         | 10000 |       |                                                  |  |
| g <sub>oss</sub> | Output Conductance <sup>2</sup>       |         | 75   |         | 100   | μS    | $V_{DS}$ = 15V, $V_{GS}$ = 0V                    |  |
| b <sub>oss</sub> | Output Susceptance <sup>2</sup>       |         | 1000 |         | 4000  |       |                                                  |  |
| G <sub>fs</sub>  | Forward Transconductance <sup>2</sup> |         |      | 4000    |       |       |                                                  |  |
| G <sub>ps</sub>  | Power Gain <sup>2</sup>               | 18      |      | 10      |       | ٩D    | $V_{DS} = 15V, I_D = 5mA$                        |  |
| NF               | Noise Figure <sup>2</sup>             |         | 2    |         | 4     | dB    | $V_{DS}$ = 15V, $I_D$ = 5mA, $R_G$ = 1k $\Omega$ |  |





#### NOTES

1. Absolute maximum ratings are limiting values above which serviceability may be impaired.

2. Not production tested, guaranteed by design.

Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.

Linear Integrated Systems (LIS) is a 25-year-old, third-generation precision semiconductor company providing high-quality discrete components. Expertise brought to LIS is based on processes and products developed at Amelco, Union Carbide, Intersil and Micro Power Systems by company President John H. Hall. Hall, a protégé of Silicon Valley legend Dr. Jean Hoerni, was the director of IC Development at Union Carbide, co-founder and vice president of R&D at Intersil, and founder/president of Micro Power Systems.

## Linear Integrated Systems