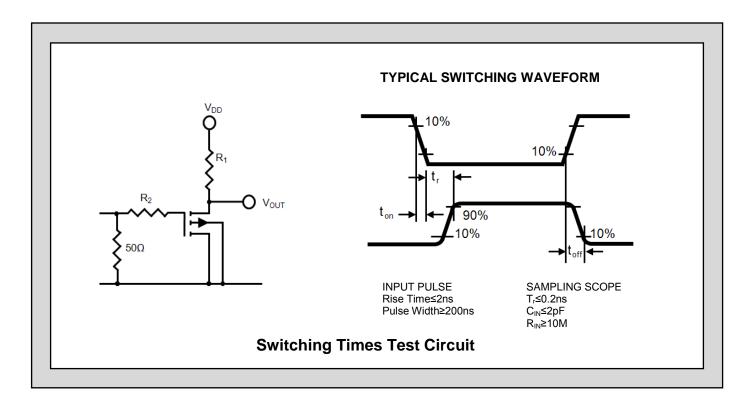


Twenty-Five Years Of Quality Through Innovation

3N163, 3N164

P-CHANNEL ENHANCEMENT MODE MOSFET

FEATURES					
VERY HIGH INPUT IMPEDANCE					
HIGH GATE BREAKDOWN					
ULTRA LOW LEAKAGE					
FAST SWITCHING					
LOW CAPACITANCE					
ABSOLUTE MAXIMUM RATINGS					
@ 25°C (unless otherwise stated)					
Drain-Source or Drain-Gate Voltage					
3N163	-40V				
3N164	-30V				
Drain Current	50mA				
Storage Temperature	-55°C to +150°C				
Power Dissipation TO-72 case	375mW²				
Power Dissipation SOT-143 case	350mW ³				



ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

SYMBOL	CHARACTI	ERISTIC	3N1	3N163 3N164		UNITS	CONDITIONS		
			MIN	MAX	MIN	MAX			
Igss	Gate Leakage Currer	nt		-10		-10	pА	V _{GS} =-40V,	V _{DS} =0 (3N163), V _{SB} =0V
		T _A =+125°C		-25		-25		V _{GS} =-30V,	V _{DS} =0 (3N164), V _{SB} =0V
BV _{DSS}	Drain-Source Breakd	own Voltage	-40		-30			I _D =-10μA	V _{GS} =0, V _{BS} =0
BV _{SDS}	Source-Drain Breakd	own Voltage	-40		-30		V	Is=-10μA	V _{GD} =0, V _{BD} =0
$V_{GS(th)}$	Threshold Voltage		-2.0	-5.0	-2.0	-5.0		$V_{DS}=V_{GS}$	I_D =-10 μ A, V_{SB} =0 V
V _G S	Gate Source Voltage	(on)	-3.0	-6.5	-3.0	-6.5		V _{DS} =-15V	I _D =-0.5mA, V _{SB} =0V
IDSS	Zero Gate Voltage, D	rain Current (off)		-200		-400	pА	V _{DS} =-15V	V _{GS} =0, V _{SB} =0V
I _{SDS}	Zero Gate Voltage, S	ource Current		-400		-800		V _{SD} =-15V	$V_{GS}=0, V_{DB}=0V$
R _{DS(on)}	Drain-Source on Res	istance		250		300	ohms	V _{GS} =-20V	I _D =-100μA, V _{SB} =0V
I _{D(on)}	On Drain Current		-5.0	-30	-3.0	-30	mA	V _{DS} =-15V	V _{GS} =-10V, V _{SB} =0V
g fs	Forward Transcondu	ctance	2.0	4.0	1.0	4.0	mS	V _{DS} =-15V	I _D =-10mA f=1kHz
g og	Output Admittance			250		250	μS		
Ciss	Input Capacitance-O	utput Shorted		3.5		3.5	pF	V _{DS} =-15V	I _D =-10mA ¹ f=1MHz
Crss	Reverse Transfer Ca	pacitance		0.7		0.7			
Coss	Output Capacitance I	nput Shorted		3.0		3.0			

SWITCHING CHARACTERISTICS T_A=25°C and V_{BS}=0 (unless otherwise noted)

SYMBOL	CHARACTERISTIC	3N163		3N164		UNITS	CONDITIONS
		MIN	MAX	MIN	MAX		
ton	Turn-On Delay Time		12		12	ns	V _{DD} =-15V, V _{SB} =0V
tr	Rise Time		24		24		I _{D(on)} =-10mA ¹
t _{off}	Turn-Off Time		50		50		$R_G=R_L=1.4K$

NOTES:

- 1. For design reference only, not 100% tested.
- 2. Derate 3mW/°C above 25°C
- 3. Derate 3.5mW/°C above 25°C
- 4. All min/max limits are absolute numbers. Negative signs indicate electrical polarity only.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.

Linear Integrated Systems (LIS) is a 25-year-old, third-generation precision semiconductor company providing high-quality discrete components. Expertise brought to LIS is based on processes and products developed at Amelco, Union Carbide, Intersil and Micro Power Systems by company President John H. Hall. Hall, a protégé of Silicon Valley legend Dr. Jean Hoerni, was the director of IC Development at Union Carbide, Co-Founder and Vice President of R&D at Intersil, and Founder/President of Micro Power Systems.