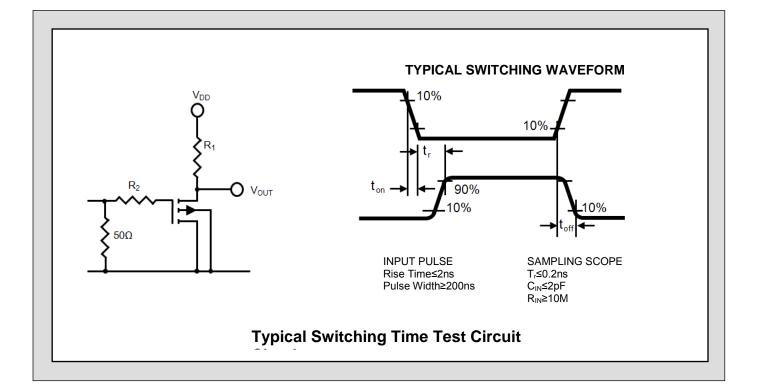

LINEAR SYSTEMS

Twenty-Five Years Of Quality Through Innovation

FEATURES				
VERY HIGH INPUT IMPEDANCE				
HIGH GATE BREAKDOWN				
ULTRA LOW LEAKAGE				
LOW CAPACITANCE				
ABSOLUTE MAXIMUM RATINGS (NOTE 1)				
(T _A =25°C unless otherwise noted)				
Drain-Source or Drain-Gate Voltage (NOTE 2)				
3N165	40 V			
3N166	30 V			
Gate-Gate Voltage	±80 V			
Drain Current (NOTE 2)	50 mA			
Storage Temperature	-55°C to +150°C			
Operating Temperature	-55°C to +150°C			
Lead Temperature (Soldering, 10 sec.)	+300°C			
Power Dissipation (One Side)	300 mW			
Total Derating above 25°C	4.2 mW/ºC			

<u>3N165, 3N166</u>

MONOLITHIC DUAL P-CHANNEL ENHANCEMENT MODE **MOSFET**



ELECTRICAL CHARACTERISTICS (T_A=25°C and V_{BS}=0 unless otherwise noted)

		3N165 & 3N166		3N165 & 3N166					
SYMBOL	CHARACTERISTIC	MIN	MAX	MIN	MAX	UNITS		CONDITIC	NS
I _{GSSR}	Gate Reverse Leakage Current		10		100		V _{GS} =40V		
I _{GSSF}	Gate Forward Leakage Current		-10		-100		V_{GS} =-40V		
			-25			pА	T _A =+125⁰C		
I _{DSS}	Drain to Source Leakage Current		-200		-200		V_{DS} =-20 V, V_{GS} = V_{BS} =0V		
I _{SDS}	Source to Drain Leakage Current		-400		-400		V_{SD} =-20 V, V_{GD} = V_{DB} =0V		
I _{D(on)}	On Drain Current	-5	-30	-5	-30	mA	V_{DS} =-15V	V_{GS} =-10 V	V _{SB} =0V
V _{GS(th)}	Gate Source Threshold Voltage	-2	-5	-2	-5	V	V_{DS} =-15V	I _D =-10µA	V _{SB} =0V
V _{GS(th)}	Gate Source Threshold Voltage	-2	-5	-2	-5	V	$V_{DS}=V_{GS}$	I _D =-10μΑ	V _{SB} =0V
r _{DS(on)}	Drain Source ON Resistance		300		300	ohms	V_{GS} =-20V	I _D =-100μΑ	V _{SB} =0V
g fs	Forward Transconductance	1500	3000	1500	3000	μS	V_{DS} =-15V	I _D =-10mA	f=1kHz
g _{os}	Output Admittance		300		300	μS		V _{SB} =0V	
Clss	Input Capacitance		3.0		3.0				
C _{rss}	Reverse Transfer Capacitance		0.7		1.0	pF	V_{DS} =-15V	I _D =-10mA	f=1MHz
Coss	Output Capacitance		3.0		3.0		(<u>NOTE 3</u>)	V _{SB} =0V	
$R_{E}(Y_{ls})$	Common Source Forward Transconductance	1200				μS	V _{DS} =-15V (<u>NOTE 3</u>)	I _D =-10mA V _{SB} =0V	f=100MHz

MATCHING CHARACTERISTICS 3N165

		LIMITS							
SYMBOL	CHARACTERISTIC	MIN. MAX.		UNITS	CONDITIONS				
G _{fs1} /G _{fs2}	Forward Transconductance Ratio	0.90	1.0		V_{DS} =-15V I _D =-500 µA f=1kHz V _{SB} =0V				
V _{GS1-2}	Gate Source Threshold Voltage Differential		100	mV	V _{DS} =-15V I _D =-500 µA V _{SB} =0V				
$\Delta V_{GS1-2}/\Delta T$	Gate Source Threshold Voltage Differential		100	µV/⁰C	V _{DS} =-15V I _D =-500 µA V _{SB} =0V				
	Change with Temperature				T_{A} =-55°C to = +125°C				

NOTES:

- 1. MOS field effect transistors have extremely high input resistance and can be damaged by the accumulation of excess static charge. To avoid possible damage to the device while wiring, testing, or in actual operation, follow these procedures: To avoid the build-up of static charge, the leads of the devices should remain shorted together with a metal ring except when being tested or used. Avoid unnecessary handling. Pick up devices by the case instead of the leads. Do not insert or remove devices from circuits with the power on, as transient voltages may cause permanent damage to the devices.
- 2. Per transistor.
- 3. For design reference only, not 100% tested.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Linear Integrated Systems (LIS) is a 25-year-old, third-generation precision semiconductor company providing high-quality discrete components. Expertise brought to LIS is based on processes and products developed at Amelco, Union Carbide, Intersil and Micro Power Systems by company President John H. Hall. Hall, a protégé of Silicon Valley legend Dr. Jean Hoerni, was the director of IC Development at Union Carbide, co-founder and vice president of R&D at Intersil, and founder/president of Micro Power Systems.

Linear Integrated Systems