
LINEAR SYSTEMS

### Twenty-Five Years Of Quality Through Innovation

| FEATURES                                         |                        |  |  |  |  |  |  |
|--------------------------------------------------|------------------------|--|--|--|--|--|--|
| Direct Replacement For SILICONIX DPAD SERIES     |                        |  |  |  |  |  |  |
| HIGH ON ISOLATION 20fA                           |                        |  |  |  |  |  |  |
| EXCELLENT CAPACITANCE MATCHING                   | ΔC <sub>R</sub> ≤0.2pF |  |  |  |  |  |  |
| ABSOLUTE MAXIMUM RATINGS <sup>1</sup>            |                        |  |  |  |  |  |  |
| @ 25°C (unless otherwise stated)                 |                        |  |  |  |  |  |  |
| Maximum Temperatures                             |                        |  |  |  |  |  |  |
| Storage Temperature                              | -55°C to +150°C        |  |  |  |  |  |  |
| Operating Junction Temperature                   | -55°C to +150°C        |  |  |  |  |  |  |
| Maximum Power Dissipation                        |                        |  |  |  |  |  |  |
| Continuous Power Dissipation (DPAD) <sup>3</sup> | 500mW                  |  |  |  |  |  |  |
| Maximum Currents                                 |                        |  |  |  |  |  |  |
| Forward Current (DPAD)                           | 50mA                   |  |  |  |  |  |  |

# DPAD SERIES

### MONOLITHIC DUAL PICO AMPERE DIODES



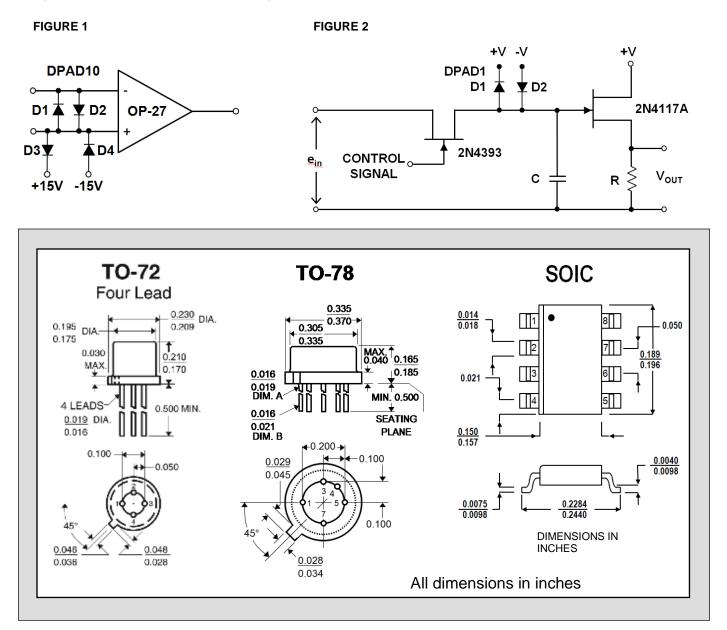
<sup>\*</sup> Case and Pin 4 must be floating on all TO-78 case devices

| SYMBOL                            | CHARACTERISTIC               |                      |     | TYP. | MAX. | UNITS | CONDITIONS                                              |
|-----------------------------------|------------------------------|----------------------|-----|------|------|-------|---------------------------------------------------------|
|                                   |                              | DPAD1                | -45 |      |      |       |                                                         |
| BV <sub>R</sub>                   | Reverse Breakdown<br>Voltage | DPAD2,5,10,20,50,100 | -45 |      |      | V     | I <sub>R</sub> = -1μΑ                                   |
|                                   |                              | SSTDPAD5,50,100      | -30 |      |      | v     |                                                         |
| V <sub>F</sub>                    | Forward Voltage              |                      |     | 0.8  | 1.5  |       | I <sub>F</sub> = 1mA                                    |
|                                   | Differential Capacitance     | DPAD1                |     |      | 0.2  |       | V <sub>R1</sub> = V <sub>R2</sub> = -5V. <i>f</i> =1MHz |
| C <sub>R1</sub> - C <sub>R2</sub> | $(\Delta C_R)$               | ALL OTHERS           |     |      | 0.5  |       | $v_{R1} = v_{R2} = -3v, I = 1101 mz$                    |
|                                   |                              | DPAD1                |     |      | 0.8  | pF    |                                                         |
| C <sub>rss</sub>                  | Total Reverse Capacitance    | DPAD2,5,10,20,50,100 |     |      | 2.0  |       | V <sub>R</sub> = -5V, <i>f</i> =1MHz                    |
|                                   |                              | SSTDPAD5,50,100      |     |      | 4.0  |       |                                                         |

#### COMMON ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise stated)

#### SPECIFIC ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise stated)

| SYMBOL         | CHARACTERISTIC                                  |              | DPAD <sup>2</sup> | SSTDPAD <sup>2</sup> | UNITS | CONDITIONS            |
|----------------|-------------------------------------------------|--------------|-------------------|----------------------|-------|-----------------------|
| I <sub>R</sub> | Maximum Reverse<br>Leakage Current <sup>2</sup> | (SST)DPAD1   | -1                |                      | рА    | V <sub>R</sub> = -20V |
|                |                                                 | (SST)DPAD2   | -2                |                      |       |                       |
|                |                                                 | (SST)DPAD5   | -5                | -5                   |       |                       |
|                |                                                 | (SST)DPAD10  | -10               |                      |       |                       |
|                |                                                 | (SST)DPAD20  | -20               |                      |       |                       |
|                |                                                 | (SST)DPAD50  | -50               | -50                  |       |                       |
|                |                                                 | (SST)DPAD100 | -100              | -100                 |       |                       |


### Linear Integrated Systems

#### **Figure 1. Operational Amplifier Protection**

Input Differential Voltage limited to 0.8V (typ) by DPADs  $D_1$  and  $D_2$ . Common Mode Input voltage limited by DPADs  $D_3$  and  $D_4$  to ±15V.

#### Figure 2. Sample and Hold Circuit

Typical Sample and Hold circuit with clipping. DPAD diodes reduce offset voltages fed capacitively from the JFET switch gate.



1. Absolute maximum ratings are limiting values above which serviceability may be impaired.

- The DPAD type number denotes its maximum reverse current value in pico amperes. Devices with I<sub>R</sub> values intermediate to those shown are available upon request.
- 3. Derate 4 mW/ºC above 25°C

Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems. Revised 29 OCT 2006.

Linear Integrated Systems (LIS) is a 25-year-old, third-generation precision semiconductor company providing high-quality discrete components. Expertise brought to LIS is based on processes and products developed at Amelco, Union Carbide, Intersil and Micro Power Systems by company President John H. Hall. Hall, a protégé of Silicon Valley legend Dr. Jean Hoerni, was the director of IC Development at Union Carbide, co-founder and vice president of R&D at Intersil, and founder/president of Micro Power Systems.

## Linear Integrated Systems