Twenty-Five Years Of Quality Through Innovation ## J500 SERIES # CURRENT REGULATING DIODES | FEATURES | | | | | | | | |---------------------------------------|-----------------------|--|--|--|--|--|--| | REPLACES SILICONIX/VISHAY J500 SERIES | | | | | | | | | WIDE CURRENT RANGE | 0.192 to 5.6mA | | | | | | | | BIASING NOT REQUIRED | $V_{GS} = 0V$ | | | | | | | | ABSOLUTE MAXIMUM RATINGS ¹ | | | | | | | | | @ 25 °C (unless otherwise stated) | | | | | | | | | Maximum Temperatures | | | | | | | | | Storage Temperature | -55 to 150°C | | | | | | | | Junction Operating Temperature | -55 to 150°C | | | | | | | | Maximum Power Dissipation | | | | | | | | | Continuous Power Dissipation @25°C | 350mW | | | | | | | | Maximum Currents | | | | | | | | | Forward Current | 20mA | | | | | | | | Reverse Current | 50mA | | | | | | | | Maximum Voltages | | | | | | | | | Peak Operating Voltage | P _{OV} = 50V | | | | | | | #### COMMON ELECTRICAL CHARACTERISTICS @ 25 °C (unless otherwise stated) | SYMBOL | CHARACTERISTIC | MIN | TYP | MAX | UNITS | CONDITIONS | |----------------|-------------------------------------|-----|-----|-----|-------|-----------------------| | Pov | Peak Operating Voltage ⁶ | 50 | | | V | $I_F = 1.1I_{F(max)}$ | | V_R | Reverse Voltage | | 0.8 | | V | $I_R = 1mA$ | | C _F | Forward Capacitance | | 2.2 | | pF | $V_F = 25V, f = 1MHz$ | #### SPECIFIC ELECTRICAL CHARACTERISTICS @ 25 °C (unless otherwise stated) | PART | Forward Current ³
I _{F(mA)} | | | | mpedance ⁴ | Knee
Impedance
Z _{k(MΩ)} | Limiting Voltage ⁵
V _{L(V)} | | |------|--|-------------|-------|------------------|-----------------------|---|--|-----| | | | $V_F = 25V$ | | V _F = | 25V | V _F = 6V | = 6V I _F = 0.8I _{F(min)} | | | | MIN | NOM | MAX | MIN | TYP | TYP | TYP | MAX | | J500 | 0.192 | 0.24 | 0.288 | 4.00 | 15 | 2.50 | 0.4 | 1.2 | | J501 | 0.264 | 0.33 | 0.396 | 2.20 | 10 | 1.60 | 0.5 | 1.3 | | J502 | 0.344 | 0.43 | 0.516 | 1.50 | 7 | 1.10 | 0.6 | 1.5 | | J503 | 0.448 | 0.56 | 0.672 | 1.20 | 5 | 0.80 | 0.7 | 1.7 | | J504 | 0.600 | 0.75 | 0.900 | 0.80 | 3.5 | 0.55 | 0.8 | 1.9 | | J505 | 0.800 | 1.00 | 1.200 | 0.50 | 2. | 0.40 | 0.9 | 2.1 | | J506 | 1.120 | 1.40 | 1.680 | 0.33 | 1.5 | 0.25 | 1.1 | 2.5 | | J507 | 1.440 | 1.80 | 2.160 | 0.20 | 1 | 0.19 | 1.3 | 2.8 | | J508 | 1.900 | 2.40 | 2.900 | 0.20 | 0.7 | 0.13 | 1.5 | 3.1 | | J509 | 2.400 | 3.00 | 3.600 | 0.15 | 0.5 | 0.09 | 1.7 | 3.5 | | J510 | 2.900 | 3.60 | 4.300 | 0.15 | 0.4 | 0.07 | 1.9 | 3.9 | | J511 | 3.800 | 4.70 | 5.600 | 0.12 | 0.3 | 0.05 | 2.1 | 4.2 | #### V-I CHARACTERISTICS CURRENT REGULTING DIODE #### **PACKAGING DETAILS** - Absolute maximum ratings are limiting values above which serviceability may be impaired. - Pulsed, t = 2ms. Steady state currents may vary. - Pulsed, t = 2ms. Continuous currents may vary. - Pulsed, t = 2ms. Continuous impedances may vary. - Min V_F required to ensure $I_F = 0.8I_{F(min)}$. 6. Max V_F where I_F = 1.1X_{F(max)}. is guaranteed. Pulsed test ≤2_{ms}. Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems. Linear Integrated Systems (LIS) is a 25-year-old, third-generation precision semiconductor company providing high-quality discrete components. Expertise brought to LIS is based on processes and products developed at Amelco, Union Carbide, Intersil and Micro Power Systems by company President John H. Hall. Hall, a protégé of Silicon Valley legend Dr. Jean Hoerni, was the director of IC Development at Union Carbide, co-founder and vice president of R&D at Intersil, and founder/president of Micro Power Systems.