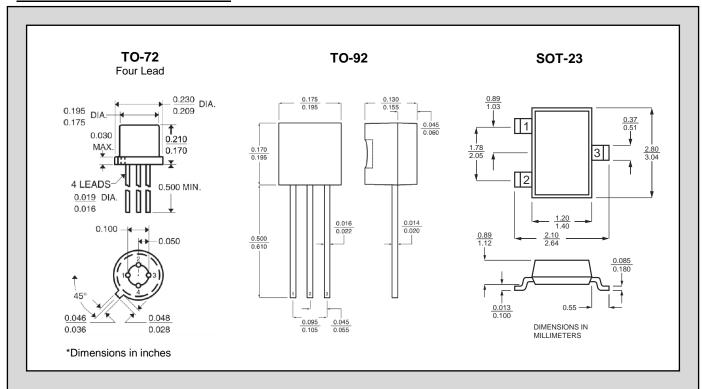


Twenty-Five Years Of Quality Through Innovation

LS846

LOW NOISE LOW LEAKAGE SINGLE N-CHANNEL JFET AMPLIFIER


FEATURES				
ULTRA LOW NOISE	$e_n = 3nV/\sqrt{Hz}$			
LOW INPUT CAPACITANCE	$C_{ISS} = 4pF$			
ABSOLUTE MAXIMUM RATINGS ¹ @ 25 °C (unless otherwise stated)				
Maximum Temperatures				
Storage Temperature	-55 to +150°C			
Operating Junction Temperature	-55 to +150°C			
Maximum Power Dissipation				
Continuous Power Dissipation TA=25°C	300mW ³			
Maximum Currents				
Gate Forward Current	$I_{G(F)} = 10mA$			
Maximum Voltages				
Gate to Source	V _{GSO} = 60V			
Gate to Drain	$V_{GDO} = 60V$			

*For equivalent Monolithic Dual, see LS843 Family

SYMBOL	CHARACTERISTIC ²	MIN	TYP	MAX	UNITS	CONDITIONS	
BV _{GSS}	Gate to Source Breakdown Voltage	-60			V	$V_{DS} = 0$, $I_D = 1nA$	
V _{GS(OFF)}	Gate to Source Pinch-off Voltage	-1		-3.5	V	$V_{DS} = 15V, I_{D} = 1nA$	
V _G s	Gate to Source Operating Voltage	-0.5		-3.5	V	$V_{DS} = 15V, I_D = 500\mu A$	
I _{DSS}	Drain to Source Saturation Current	1.5	5	15	mA	$V_{DS} = 15V, V_{GS} = 0$	
IG	Gate Operating Current		-15	-50	pА	$V_{DG} = 15V, I_D = 500\mu A$	
IG	Gate Operating Current Reduced V _{DG}		-5	-30	рА	$V_{DG} = 3V$, $I_D = 500\mu A$	
I _{GSS}	Gate to Source Leakage Current			-100	рА	$V_{GS} = 15V, V_{DS} = 0$	
G _{fss}	Full Conductance Transconductance	1500			μS	$V_{DS} = 15V, V_{GS} = 0, f = 1kHz$	
G _{fs}	Typical Operation Transconductance	1000	1500		μS	$V_{DS} = 15V, I_D = 200\mu A$	
Goss	Full Output Conductance			40	μS	$V_{DS} = 15V, V_{GS} = 0$	
Gos	Typical Operation Output Conductance		2.0	2.70	μS	V _{DS} = 15V, I _D = 200μA	
NF	Noise Figure			0.5	dB	$V_{DS} = 15V$, $V_{GS} = 0$, $R_{G} = 10M\Omega$, $f = 100Hz$, $NBW = 6Hz$	
e _n	Noise Voltage		3	7	nV/√Hz	$V_{DS} = 15V$, $I_{D} = 500\mu A$, $f = 1kHz$, NBW = 1Hz	
e n	Noise Voltage			11	nV/√Hz	$V_{DS} = 15V$, $I_{D} = 500\mu A$, $f = 10Hz$, $NBW = 1Hz$	
C _{ISS}	Common Source Input Capacitance			8	pF	V _{DS} = 15V, I _D = 500μA, <i>f</i> = 1MHz	
Crss	Common Source Reverse Transfer Cap.			3	pF	νως – 13ν, 10 – 300μΑ, 7 – 1101112	

STANDARD PACKAGE DIMENSIONS:

NOTES:

- 1. Absolute maximum ratings are limiting values above which serviceability may be impaired.
- 2. All MIN/TYP/MAX limits are absolute numbers. Negative signs indicate negative electrical polarity only.
- 3. Derate 2.8mW/°C above 25°C.

Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.

Linear Integrated Systems (LIS) is a 25-year-old, third-generation precision semiconductor company providing high-quality discrete components. Expertise brought to LIS is based on processes and products developed at Amelco, Union Carbide, Intersil and Micro Power Systems by company President John H. Hall. Hall, a protégé of Silicon Valley legend Dr. Jean Hoerni, was the director of IC Development at Union Carbide, Co-Founder and Vice President of R&D at Intersil, and Founder/President of Micro Power Systems.