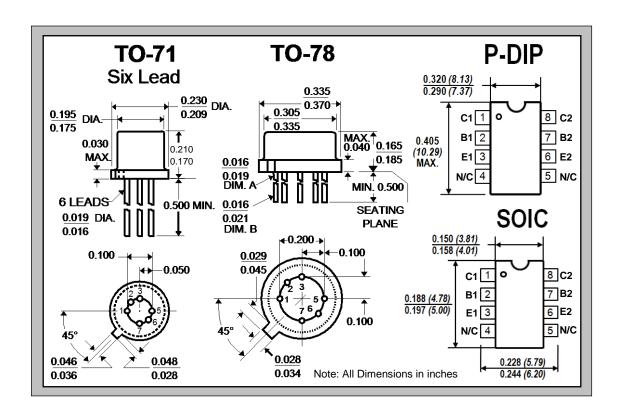


Twenty-Five Years Of Quality Through Innovation

IT124 SUPER-BETA MONOLITHIC DUAL NPN TRANSISTORS

FEATURES					
Direct Replacement for Intersil IT124 Pin for Pin Compatible					
ABSOLUTE MAXIMUM RATINGS NOTE 1 (T _A = 25°C unless otherwise noted)					
I _C Collector-Current 10mA					
Maximum Temperatures					
Storage Temperature Range			-65°C to +150°C		
Operating Junction Temperature			-55°C to +150°C		
Maximum Power Dissipation	ONE S	IDE	BOTH SIDES		
Device Dissipation T _A =25°C	250m	W	500mW		
Linear Derating Factor	2.3mW/°C		4.3W/°C		



ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

SYMBOL	CHARACTERISTIC	IT124		UNITS	CONDITIONS	
BV _{CBO}	Collector-Base Breakdown Voltage	2	MIN.	V	$I_C = 10\mu A$	$I_E = 0A$
BV _{CEO}	Collector to Emitter Voltage	2	MIN.	V	$I_C = 10\mu A$	$I_B = 0A$
BV _{EBO}	Emitter-Base Breakdown Voltage	6.2	MIN.	V	$I_E = 10\mu A$	I _C = 0A NOTE 2
BV _{CCO}	Collector to Collector Voltage	50	MIN.	V	$I_{CCO} = 10\mu A$	$I_B = I_E = 0A$
h _{FE}	DC Current Gain	1500	MIN.		$I_C = 1\mu A$	V _{CE} = 1V
h _{FE}	DC Current Gain	1500	MIN.		$I_C = 10\mu A$	V _{CE} = 1V
V _{CE} (SAT)	Collector Saturation Voltage	0.5	MAX.	V	$I_C = 1mA$	$I_B = 0.1 \text{mA}$
I _{CBO}	Collector Cutoff Current	100	MAX.	pА	I _E = 0	V _{CB} = 1V
I _{EBO}	Emitter Cutoff Current	100	MAX.	pА	$I_C = 0$	V _{EB} = 3V
Сово	Output Capacitance ³	2	MAX.	pF	I _E = 0	V _{CB} = 1V
C _{C1C2}	Collector to Collector Capacitance ³	2	MAX.	pF	$V_{CC} = 0$	
I _{C1C2}	Collector to Collector Leakage Current	±500	MAX.	nA	$V_{CCO} = \pm 50V$	$I_B = I_E = 0A$
f _T	Current Gain Bandwidth Product ³	100	MIN.	MHz	I _C = 100μA	V _{CE} = 1V
NF	Narrow Band Noise Figure ³	3	MAX.	dB	$I_C = 10\mu A$	V _{CE} = 3V
					$R_G = 10 \text{ K}\Omega$	f=1KHz
					BW = 200Hz	

MATCHING CHARACTERISTICS @ 25°C (unless otherwise noted)

SYMBOL	CHARACTERISTIC	IT124		UNITS	CONDITIONS
V _{BE1} -V _{BE2}	Base Emitter Voltage Differential	2	TYP.	mV	$I_C = 10 \ \mu A$ $V_{CE} = 1 V$
		5	MAX.	mV	
$\Delta (V_{BE1}-V_{BE2}) /\Delta T$	Base Emitter Voltage Differential	5	TYP.	μV/°C	$I_C = 10 \ \mu A$ $V_{CE} = 1 V$
	Change with Temperature ³	15	MAX.	μV/°C	T = -55°C to +125°C
I _{B1} -I _{B2}	Base Current Differential	0.6	MAX.	nA	$I_C = 10 \ \mu A$ $V_{CE} = 1 V$

NOTES:

- 1. These ratings are limiting values above which the serviceability of any semiconductor may be impaired
- 2. The reverse base-to-emitter voltage must never exceed 6.2 volts; the reverse base-to-emitter current must never exceed 10 μ A.
- 3. Not a production test.

Linear Integrated Systems (LIS) is a 25-year-old, third-generation precision semiconductor company providing high-quality discrete components. Expertise brought to LIS is based on processes and products developed at Amelco, Union Carbide, Intersil and Micro Power Systems by company President John H. Hall. Hall, a protégé of Silicon Valley legend Dr. Jean Hoerni, was the director of IC Development at Union Carbide, co-founder and vice president of R&D at Intersil, and founder/president of Micro Power Systems.