

Twenty-Five Years Of Quality Through Innovation

FEATURES						
DIRECT REPLACEMENT FOR SILICONIX PAD SERIES						
REVERSE BREAKDOWN VOLTAGE BV _R ≥ -30V						
REVERSE CAPACITANCE	C _{rss} ≤ 2.0pF					
ABSOLUTE MAXIMUM RATINGS ¹						
@ 25 °C (unless otherwise stated)						
Maximum Temperatures						
Storage Temperature	-55 to +150 °C					
Operating Junction Temperature	-55 to +150 °C					
Maximum Power Dissipation						
Continuous Power Dissipation (PAD)	300mW					
Continuous Power Dissipation (J/SSTPAD) 350mV						
Maximum Currents						
Forward Current (PAD)	50mA					
Forward Current (J/SSTPAD)	10mA					

PAD SERIES

PICO AMPERE DIODES

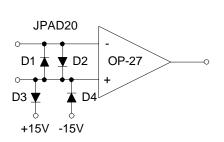
COMMON ELECTRICAL CHARACTERISTICS @ 25 °C (unless otherwise stated)

SYMBOL	CHARACTERISTIC			TYP	MAX	UNITS	CONDITIONS
BV _R	Reverse Breakdown Voltage	ALL PAD	-45			V	I _R = -1μA
		ALL SSTPAD	-30				
		ALL JPAD	-35				
V _F	Forward Voltage			0.8	1.5		$I_F = 5mA$
C _{rss}	Total Reverse Capacitance	PAD1,5		0.5	0.8	pF	V _R = -5V, <i>f</i> = 1MHz
		All Others		1.5	2		

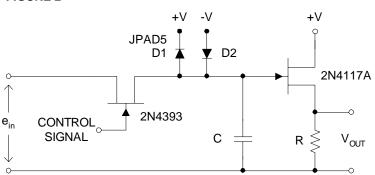
SPECIFIC ELECTRICAL CHARACTERISTICS @ 25 °C (unless otherwise stated)

of Edit to EEE of Monte of Minter entropy (unloss different books)									
SYMBOL	CHARACTERISTIC		PAD	JPAD	SSTPAD	UNITS	CONDITIONS		
I _R	Maximum Reverse Leakage Current	PAD1	-1			pA	V _R = -20V		
		PAD2	-2						
		(SST/J)PAD5	-5	-5	-5				
		(SST/J)PAD10	-10	-10	-10				
		(SST/J)PAD20	-20	-20	-20				
		(SST/J)PAD50	-50	-50	-50				
		(SST/J)PAD100	-100	-100					
		(SST/J)PAD200		-200					
		(SST/J)PAD500		-500					

- 1. Derate 2mW/°C above 25°C
- 2. Derate 2.8mW/°C above 25°C


Figure 1. Operational Amplifier Protection

Input Differential Voltage limited to 0.8V (typ) by JPADs D_1 and D_2 . Common Mode Input voltage limited by JPADs D_3 and D_4 to ± 15 V.


Figure 2. Sample and Hold Circuit

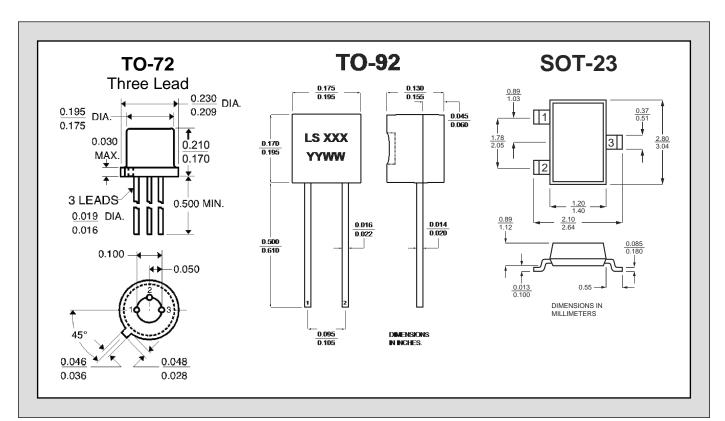

Typical Sample and Hold circuit with clipping. JPAD diodes reduce offset voltages fed capacitively from the JFET switch gate.

FIGURE 1

FIGURE 2

- 1. Absolute maximum ratings are limiting values above which serviceability may be impaired.
- 2. The PAD type number denotes its maximum reverse current value in pico amperes. Devices with I_R values intermediate to those shown are available upon request.

Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.

Linear Integrated Systems (LIS) is a 25-year-old, third-generation precision semiconductor company providing high-quality discrete components. Expertise brought to LIS is based on processes and products developed at Amelco, Union Carbide, Intersil and Micro Power Systems by company President John H. Hall. Hall, a protégé of Silicon Valley legend Dr. Jean Hoerni, was the director of IC Development at Union Carbide, co-founder and vice president of R&D at Intersil, and founder/president of Micro Power Systems.